論文の概要: GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning
- arxiv url: http://arxiv.org/abs/2305.12114v1
- Date: Sat, 20 May 2023 06:27:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 00:37:25.177001
- Title: GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning
- Title(参考訳): GFDC: 証拠推論を用いた顆粒核融合密度クラスタリング
- Authors: Mingjie Cai, Zhishan Wu, Qingguo Li, Feng Xu, Jie Zhou
- Abstract要約: 密度に基づくクラスタリングアルゴリズムは任意の形状のクラスタを検出できるため、広く適用されている。
本稿では,GFDCを用いた粒界融合密度クラスタリングを提案する。
サンプルの局所密度と大域密度は、まずスパース度測定によって測定される。
次に、情報グラニュラーを高密度および低密度領域に生成し、大きな密度差を持つクラスタの処理を支援する。
- 参考スコア(独自算出の注目度): 22.526274021556755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, density-based clustering algorithms are widely applied because
they can detect clusters with arbitrary shapes. However, they perform poorly in
measuring global density, determining reasonable cluster centers or structures,
assigning samples accurately and handling data with large density differences
among clusters. To overcome their drawbacks, this paper proposes a granule
fusion density-based clustering with evidential reasoning (GFDC). Both local
and global densities of samples are measured by a sparse degree metric first.
Then information granules are generated in high-density and low-density
regions, assisting in processing clusters with significant density differences.
Further, three novel granule fusion strategies are utilized to combine granules
into stable cluster structures, helping to detect clusters with arbitrary
shapes. Finally, by an assignment method developed from Dempster-Shafer theory,
unstable samples are assigned. After using GFDC, a reasonable clustering result
and some identified outliers can be obtained. The experimental results on
extensive datasets demonstrate the effectiveness of GFDC.
- Abstract(参考訳): 現在、任意の形状のクラスタを検出できるため、密度ベースのクラスタリングアルゴリズムが広く適用されている。
しかし、グローバル密度の測定や、合理的なクラスタ中心や構造の決定、サンプルの正確な割り当て、クラスタ間の密度差が大きいデータの処理において、パフォーマンスが劣る。
本稿では,その欠点を克服するために,証拠推論(gfdc)を用いた粒状核融合密度に基づくクラスタリングを提案する。
サンプルの局所密度と大域密度は、まずスパース度測定によって測定される。
次に、情報グラニュラーを高密度および低密度領域に生成し、大きな密度差を持つクラスタの処理を支援する。
さらに、3つの新しい顆粒融合戦略を用いて、顆粒を安定したクラスター構造に結合し、任意の形状のクラスターを検出する。
最後に、デンプスター・シェーファー理論から開発された割当法により、不安定なサンプルを割り当てる。
gfdcを使用すると、合理的なクラスタリング結果と特定された外れ値が得られる。
広範なデータセットを用いた実験の結果,gfdcの有効性が示された。
関連論文リスト
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
本稿では,クラスタ数を自動的に決定し,データ空間とグラフ空間の両方に適用可能な密度に基づくノードクラスタリング手法を提案する。
二つのノード間の距離を計算する従来の密度クラスタリング法とは異なり,提案手法は伝播過程を通じて密度を決定する。
論文 参考訳(メタデータ) (2024-11-04T04:09:36Z) - SHADE: Deep Density-based Clustering [13.629470968274]
SHADEは密度接続性を損失関数に組み込む最初のディープクラスタリングアルゴリズムである。
ディープオートエンコーダの表現力で高次元および大規模データセットをサポートする。
これはクラスタリングの品質、特に非ガウスクラスタを含むデータにおいて、既存のメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-10-08T18:03:35Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - DECWA : Density-Based Clustering using Wasserstein Distance [1.4132765964347058]
空間密度と確率的アプローチに基づく新しいクラスタリングアルゴリズムを提案する。
提案手法は, 様々なデータセットにおいて, 最先端の密度に基づくクラスタリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-25T11:10:08Z) - Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy
Granular balls [67.33923111887933]
本稿では,データをグラニュラーボールを用いてファジィにイテレーションし,その位置にある2つのグラニュラーボールのみをデータのメンバーシップ度として検討する。
ファジィグラニュラーボールセットは、異なるデータシナリオに直面して、より多くの処理方法を使用することができる。
論文 参考訳(メタデータ) (2023-03-07T01:52:55Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
クラスタ化前にデータセットのトポロジ構造を推定することで,クラスタ検出を大幅に向上させることができることを示す。
位相構造を推定するための多様体学習法UMAPと密度に基づくクラスタリング法DBSCANを組み合わせた。
論文 参考訳(メタデータ) (2022-07-01T15:53:39Z) - VDPC: Variational Density Peak Clustering Algorithm [16.20037014662979]
本稿では,変分密度のクラスタを識別するための変分密度ピーククラスタリング(VDPC)アルゴリズムを提案する。
VDPCは2つの古典的アルゴリズム(DPCとDBSCAN)と4つの最先端拡張DPCアルゴリズムより優れている。
論文 参考訳(メタデータ) (2021-12-29T12:50:09Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。