論文の概要: High-order Tensor Pooling with Attention for Action Recognition
- arxiv url: http://arxiv.org/abs/2110.05216v3
- Date: Mon, 16 Oct 2023 05:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 07:19:53.825529
- Title: High-order Tensor Pooling with Attention for Action Recognition
- Title(参考訳): 動作認識に注意を向けた高次テンソルプーリング
- Authors: Lei Wang and Piotr Koniusz and Ke Sun
- Abstract要約: ニューラルネットワークによって形成される特徴ベクトルの高次統計値を取得する。
テンソル記述子を形成するために,エンドツーエンドの2次・高次プールを提案する。
- 参考スコア(独自算出の注目度): 39.22510412349891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We aim at capturing high-order statistics of feature vectors formed by a
neural network, and propose end-to-end second- and higher-order pooling to form
a tensor descriptor. Tensor descriptors require a robust similarity measure due
to low numbers of aggregated vectors and the burstiness phenomenon, when a
given feature appears more/less frequently than statistically expected. The
Heat Diffusion Process (HDP) on a graph Laplacian is closely related to the
Eigenvalue Power Normalization (EPN) of the covariance/autocorrelation matrix,
whose inverse forms a loopy graph Laplacian. We show that the HDP and the EPN
play the same role, i.e., to boost or dampen the magnitude of the eigenspectrum
thus preventing the burstiness. We equip higher-order tensors with EPN which
acts as a spectral detector of higher-order occurrences to prevent burstiness.
We also prove that for a tensor of order r built from d dimensional feature
descriptors, such a detector gives the likelihood if at least one higher-order
occurrence is 'projected' into one of binom(d,r) subspaces represented by the
tensor; thus forming a tensor power normalization metric endowed with
binom(d,r) such 'detectors'. For experimental contributions, we apply several
second- and higher-order pooling variants to action recognition, provide
previously not presented comparisons of such pooling variants, and show
state-of-the-art results on HMDB-51, YUP++ and MPII Cooking Activities.
- Abstract(参考訳): 本稿では,ニューラルネットワークによって形成される特徴ベクトルの高次統計を捉え,エンドツーエンドの2次・高次プーリングを提案し,テンソルディスクリプタを構成する。
テンソルディスクリプタは、集約ベクトルの少ない数と、与えられた特徴が統計的に予想されるよりも頻繁に現れるバーストネス現象のために、堅牢な類似度尺度を必要とする。
グラフラプラシアン上の熱拡散過程(HDP)は、逆がループグラフラプラシアンを形成する共分散自己相関行列の固有値パワー正規化(EPN)と密接に関係している。
我々は,HDPとEPNが同一の役割を担っていること,すなわち固有スペクトルの大きさを増大または減衰させることにより,バーストの防止を図っている。
我々は、高次発生のスペクトル検出器として作用するepnに高次テンソルを装備し、バーストネスを防止する。
また、d次元特徴記述子から構築された位数 r のテンソルに対して、そのような検出器は、少なくとも1つの高次発生がテンソルで表されるbinom(d,r)部分空間の1つに「射影」される可能性を示し、したがってそのような「detectors」のようなbinom(d,r)で導かれるテンソルパワー正規化計量を形成する。
実験的なコントリビューションとして,2次および高次プール変種をアクション認識に適用し,これまでに提示されていないプール変種の比較を行い,HMDB-51,YUP++,MPII調理活動の最先端結果を示す。
関連論文リスト
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
ノイズからの画像生成とデータからの逆変換の両方を可能にする拡散モデル (DM) は、強力な未ペア画像対イメージ(I2I)翻訳アルゴリズムにインスピレーションを与えている。
我々は、最小輸送コストの分布間の微分方程式(SDE)であるSchrodinger Bridges (SBs) を用いてこの問題に取り組む。
この観測に触発されて,SB ODE を予め訓練した安定拡散により近似する潜在シュロディンガー橋 (LSB) を提案する。
提案アルゴリズムは,従来のDMのコストをわずかに抑えながら,教師なし環境での競合的I2I翻訳を実現していることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:24:14Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - A Nested Matrix-Tensor Model for Noisy Multi-view Clustering [5.132856740094742]
次数3のスパイクされたランク1テンソルモデルを拡張するネスト行列テンソルモデルを提案する。
理論的結果から,提案手法の正確な精度を予測できることが示唆された。
本分析では, モデルパラメータによって, 予期せぬ非自明な相転移現象を呈する。
論文 参考訳(メタデータ) (2023-05-31T16:13:46Z) - Estimating Higher-Order Mixed Memberships via the $\ell_{2,\infty}$
Tensor Perturbation Bound [8.521132000449766]
テンソルブロックモデルの一般化であるテンソル混合メンバーシップブロックモデルを提案する。
我々は,モデルの同定可能性を確立し,計算効率の良い推定手法を提案する。
本手法を実データおよびシミュレーションデータに適用し,個別のコミュニティメンバーシップを持つモデルから特定できない効果を示す。
論文 参考訳(メタデータ) (2022-12-16T18:32:20Z) - Tensor Representations for Action Recognition [54.710267354274194]
シーケンスにおける人間の行動は、空間的特徴とその時間的ダイナミクスの複雑な相互作用によって特徴づけられる。
アクション認識タスクの視覚的特徴間の高次関係を捉えるための新しいテンソル表現を提案する。
我々は,高次テンソルといわゆる固有値パワー正規化(NEP)を用いて,高次事象のスペクトル検出を行う。
論文 参考訳(メタデータ) (2020-12-28T17:27:18Z) - Power Normalizations in Fine-grained Image, Few-shot Image and Graph
Classification [38.84294567166725]
深層学習におけるパワーノーマリゼーション(PN)を,新たなPN層プール機能マップを用いて検討する。
2つのポピュラーなPN関数であるMaxExpとGammaの役割と意味を調べます。
自己相関/共分散行列上のSPNとグラフラプラシア行列上の熱拡散過程(HDP)が密接に関連していることを示す。
論文 参考訳(メタデータ) (2020-12-27T17:06:06Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。