論文の概要: BotNet Detection On Social Media
- arxiv url: http://arxiv.org/abs/2110.05661v1
- Date: Tue, 12 Oct 2021 00:38:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 05:17:02.739541
- Title: BotNet Detection On Social Media
- Title(参考訳): ソーシャルメディア上のBotNet検出
- Authors: Aniket Chandrakant Devle, Julia Ann Jose, Abhay Shrinivas
Saraswathula, Shubham Mehta, Siddhant Srivastava, Sirisha Kona, Sudheera
Daggumalli
- Abstract要約: ソーシャルメディアは、これらのプラットフォームを使って他のユーザーを操作しようとするユーザー(ボット)アカウントにとって、オープンな場となっている。
ボットが選挙結果を操作している証拠は、全国、つまり世界にとって大きな脅威となる可能性がある。
私たちの目標は、セマンティックなWebマイニング技術を活用して、これらの活動に関わる偽のボットやアカウントを特定することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Given the popularity of social media and the notion of it being a platform
encouraging free speech, it has become an open playground for user (bot)
accounts trying to manipulate other users using these platforms. Social bots
not only learn human conversations, manners, and presence but also manipulate
public opinion, act as scammers, manipulate stock markets, etc. There has been
evidence of bots manipulating the election results which can be a great threat
to the whole nation and hence the whole world. So identification and prevention
of such campaigns that release or create the bots have become critical to
tackling it at its source of origin. Our goal is to leverage semantic web
mining techniques to identify fake bots or accounts involved in these
activities.
- Abstract(参考訳): ソーシャルメディアの人気と、それが言論の自由を促進するプラットフォームであるという考えから、これらのプラットフォームを使って他のユーザーを操作しようとするユーザー(ボット)アカウントのオープンプレイグラウンドとなっている。
ソーシャルボットは人間の会話、作法、存在を学習するだけでなく、世論の操作、詐欺行為、株式市場の操作なども行う。
ボットが選挙結果を操作している証拠は、全国、つまり世界にとって大きな脅威となる可能性がある。
そのため、ボットを放出または生成するキャンペーンの識別と防止は、その起源に対処するために重要になっている。
私たちの目標は、セマンティックウェブマイニング技術を活用して、これらの活動に関わる偽のボットやアカウントを特定することです。
関連論文リスト
- Social Media Bot Policies: Evaluating Passive and Active Enforcement [0.0]
マルチモーダル・ファンデーション・モデル(MFM)は、悪意あるアクターがオンラインユーザーを搾取するのを助長する可能性がある。
我々は、X(元Twitter)、Instagram、Facebook、Threads、TikTok、Mastodon、Reddit、LinkedInの8つのソーシャルメディアプラットフォームにおけるボットとコンテンツポリシーを調査した。
以上の結果から,これらのプラットフォームの現在の実施機構に重大な脆弱性があることが示唆された。
論文 参考訳(メタデータ) (2024-09-27T17:28:25Z) - Entendre, a Social Bot Detection Tool for Niche, Fringe, and Extreme Social Media [1.4913052010438639]
オープンアクセス、スケーラブル、プラットフォームに依存しないボット検出フレームワークであるEntendreを紹介した。
われわれは、ほとんどのソーシャルプラットフォームが一般的なテンプレートを共有しており、ユーザーはコンテンツを投稿し、コンテンツを承認し、バイオを提供することができるという考えを生かしている。
Entendreの有効性を示すために、私たちは、現在定義されている右翼プラットフォームであるParlerに人種差別的コンテンツを投稿するアカウントの中で、ボットの存在を調査するために使用しました。
論文 参考訳(メタデータ) (2024-08-13T13:50:49Z) - Sleeper Social Bots: a new generation of AI disinformation bots are already a political threat [0.0]
Sleeper Socialbots」は、偽情報を広め、世論を操るために作られたAI駆動のソーシャルボットである。
予備的な発見は、これらのボットが人間のユーザーとして説得力を持って通過し、会話に積極的に参加し、偽情報を効果的に広めることができることを示唆している。
私たちの研究の意味は、2024年の米国大統領選挙以降でソーシャルボットがもたらす重大な課題を示している。
論文 参考訳(メタデータ) (2024-08-07T19:57:10Z) - Unmasking Social Bots: How Confident Are We? [41.94295877935867]
本稿では,ボット検出と不確実性の定量化の両方に対処することを提案する。
この二重焦点は、各予測の定量化の不確実性に関連する追加情報を活用することができるため、非常に重要である。
具体的には,予測を高い信頼性で行う場合のボットに対する標的的介入を促進するとともに,予測が不確実な場合の警告(例えば,より多くのデータ収集)を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:33:52Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - You are a Bot! -- Studying the Development of Bot Accusations on Twitter [1.7626250599622473]
地上の真実データがないと、研究者たちは群衆の知恵を取り入れたいかもしれない。
本研究は,Twitter上でのボットの告発に関する大規模な研究である。
この言葉は、ソーシャルメディアの会話において、ボットという用語が非人間化の道具になったことを示している。
論文 参考訳(メタデータ) (2023-02-01T16:09:11Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
ソーシャルボットは、世論を操作することを目的として悪意あるアクターが運営するソーシャルメディアアカウントの自動化だと考えられている。
社会ボットの活動は、アメリカ合衆国大統領選挙を含む様々な政治的文脈で報告されている。
ソーシャルボットの普及率を推定するために広く利用されている研究設計の根本的な欠点を指摘する。
論文 参考訳(メタデータ) (2022-07-23T09:31:30Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and
Conspiracy Movements [67.39353554498636]
我々は35,382の異なるチャンネルと130,000,000以上のメッセージを収集して,Telegramの大規模解析を行う。
カードなどのダークウェブのプライバシー保護サービスにも、悪名高い活動がいくつかある。
疑似チャネルを86%の精度で識別できる機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-26T14:53:31Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。