論文の概要: Sleeper Social Bots: a new generation of AI disinformation bots are already a political threat
- arxiv url: http://arxiv.org/abs/2408.12603v1
- Date: Wed, 7 Aug 2024 19:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:12:14.468743
- Title: Sleeper Social Bots: a new generation of AI disinformation bots are already a political threat
- Title(参考訳): Sleeper Social Bots:新しい世代のAI偽情報ボットはすでに政治的脅威だ
- Authors: Jaiv Doshi, Ines Novacic, Curtis Fletcher, Mats Borges, Elea Zhong, Mark C. Marino, Jason Gan, Sophia Mager, Dane Sprague, Melinda Xia,
- Abstract要約: Sleeper Socialbots」は、偽情報を広め、世論を操るために作られたAI駆動のソーシャルボットである。
予備的な発見は、これらのボットが人間のユーザーとして説得力を持って通過し、会話に積極的に参加し、偽情報を効果的に広めることができることを示唆している。
私たちの研究の意味は、2024年の米国大統領選挙以降でソーシャルボットがもたらす重大な課題を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a study on the growing threat of "sleeper social bots," AI-driven social bots in the political landscape, created to spread disinformation and manipulate public opinion. We based the name sleeper social bots on their ability to pass as humans on social platforms, where they're embedded like political "sleeper" agents, making them harder to detect and more disruptive. To illustrate the threat these bots pose, our research team at the University of Southern California constructed a demonstration using a private Mastodon server, where ChatGPT-driven bots, programmed with distinct personalities and political viewpoints, engaged in discussions with human participants about a fictional electoral proposition. Our preliminary findings suggest these bots can convincingly pass as human users, actively participate in conversations, and effectively disseminate disinformation. Moreover, they can adapt their arguments based on the responses of human interlocutors, showcasing their dynamic and persuasive capabilities. College students participating in initial experiments failed to identify our bots, underscoring the urgent need for increased awareness and education about the dangers of AI-driven disinformation, and in particular, disinformation spread by bots. The implications of our research point to the significant challenges posed by social bots in the upcoming 2024 U.S. presidential election and beyond.
- Abstract(参考訳): 本稿では, 情報拡散と世論の操作を目的とした, 政治現場におけるAI駆動型ソーシャルボット「スリーパー・ソーシャルボット」の脅威拡大に関する研究を行う。
私たちは、Sleeperソーシャルボットという名前を、社会的プラットフォーム上で人間として通る能力に基づいています。
南カリフォルニア大学の我々の研究チームは、これらのボットがもたらす脅威を説明するために、プライベートなMastodonサーバーを使ってデモを作成しました。
予備的な発見は、これらのボットが人間として説得力を持って通過し、会話に積極的に参加し、情報の拡散を効果的に行うことを示唆している。
さらに、人間の介在者の反応に基づいて議論を適応させ、その動的かつ説得的な能力を示す。
最初の実験に参加した大学生は、私たちのボットを特定することができず、AI駆動の偽情報、特にボットによって拡散される偽情報の危険性について、認識と教育の急激な必要性を強調した。
私たちの研究の意味は、2024年の米国大統領選挙以降でソーシャルボットがもたらす重大な課題を示している。
関連論文リスト
- Adversarial Botometer: Adversarial Analysis for Social Bot Detection [1.9280536006736573]
ソーシャルボットは人間の創造性を模倣するコンテンツを制作する。
悪意のあるソーシャルボットは、非現実的なコンテンツで人々を騙すようになる。
テキストベースのボット検出器の動作を競合環境下で評価する。
論文 参考訳(メタデータ) (2024-05-03T11:28:21Z) - Social bots sour activist sentiment without eroding engagement [0.0]
ボットは、加熱されたオンライン期間に、その逆よりも人間の行動に大きな影響を及ぼすことがわかった。
政治的妨害ボットは活動量を増やし、他のボットは活動量を減少させる。
個々のボットの遭遇による影響は小さいように見えるが、ボットの通信量が多すぎるため、累積効果は深刻なものである。
論文 参考訳(メタデータ) (2024-03-19T16:58:45Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - You are a Bot! -- Studying the Development of Bot Accusations on Twitter [1.7626250599622473]
地上の真実データがないと、研究者たちは群衆の知恵を取り入れたいかもしれない。
本研究は,Twitter上でのボットの告発に関する大規模な研究である。
この言葉は、ソーシャルメディアの会話において、ボットという用語が非人間化の道具になったことを示している。
論文 参考訳(メタデータ) (2023-02-01T16:09:11Z) - Neural Generation Meets Real People: Building a Social, Informative
Open-Domain Dialogue Agent [65.68144111226626]
Chirpy Cardinalは、情報と会話の両方をねらっている。
ユーザーとボットの両方を交互に会話に駆り立てる。
Chirpy Cardinalは、Alexa Prize Socialbot Grand Challengeで9つのボットのうち2位にランクインした。
論文 参考訳(メタデータ) (2022-07-25T09:57:23Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
ソーシャルボットは、世論を操作することを目的として悪意あるアクターが運営するソーシャルメディアアカウントの自動化だと考えられている。
社会ボットの活動は、アメリカ合衆国大統領選挙を含む様々な政治的文脈で報告されている。
ソーシャルボットの普及率を推定するために広く利用されている研究設計の根本的な欠点を指摘する。
論文 参考訳(メタデータ) (2022-07-23T09:31:30Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - BotNet Detection On Social Media [0.0]
ソーシャルメディアは、これらのプラットフォームを使って他のユーザーを操作しようとするユーザー(ボット)アカウントにとって、オープンな場となっている。
ボットが選挙結果を操作している証拠は、全国、つまり世界にとって大きな脅威となる可能性がある。
私たちの目標は、セマンティックなWebマイニング技術を活用して、これらの活動に関わる偽のボットやアカウントを特定することです。
論文 参考訳(メタデータ) (2021-10-12T00:38:51Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。