論文の概要: Hierarchical Modeling for Task Recognition and Action Segmentation in
Weakly-Labeled Instructional Videos
- arxiv url: http://arxiv.org/abs/2110.05697v1
- Date: Tue, 12 Oct 2021 02:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 02:11:16.398468
- Title: Hierarchical Modeling for Task Recognition and Action Segmentation in
Weakly-Labeled Instructional Videos
- Title(参考訳): 弱ラベル映像におけるタスク認識とアクションセグメンテーションのための階層的モデリング
- Authors: Reza Ghoddoosian, Saif Sayed, Vassilis Athitsos
- Abstract要約: 本稿では,弱いラベル付き指導ビデオにおけるタスク認識とアクションセグメンテーションに焦点を当てた。
本稿では,意味的階層と時間的階層を利用して指導ビデオの上位レベルタスクを認識できる2ストリームフレームワークを提案する。
提案手法では, 微粒な動作系列の推論を制約するために, 予測タスクを用いる。
- 参考スコア(独自算出の注目度): 6.187780920448871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on task recognition and action segmentation in
weakly-labeled instructional videos, where only the ordered sequence of
video-level actions is available during training. We propose a two-stream
framework, which exploits semantic and temporal hierarchies to recognize
top-level tasks in instructional videos. Further, we present a novel top-down
weakly-supervised action segmentation approach, where the predicted task is
used to constrain the inference of fine-grained action sequences. Experimental
results on the popular Breakfast and Cooking 2 datasets show that our
two-stream hierarchical task modeling significantly outperforms existing
methods in top-level task recognition for all datasets and metrics.
Additionally, using our task recognition framework in the proposed top-down
action segmentation approach consistently improves the state of the art, while
also reducing segmentation inference time by 80-90 percent.
- Abstract(参考訳): 本稿では,訓練中のビデオレベルアクションの順序列のみを使用可能な,弱いラベル付き指導ビデオにおけるタスク認識とアクションセグメンテーションに焦点を当てた。
本稿では,意味的階層と時間的階層を利用して指導ビデオの上位タスクを認識する2ストリームフレームワークを提案する。
さらに,提案手法では,微粒なアクションシーケンスの推論を制約するために,予測タスクが使用される。
人気のBreakfast and Cooking 2データセットの実験結果から、私たちの2ストリームの階層的なタスクモデリングは、すべてのデータセットとメトリクスの上位レベルのタスク認識において、既存のメソッドよりも大幅に優れています。
さらに,提案するトップダウンアクションセグメンテーション手法におけるタスク認識フレームワークの利用により,技術状況は一貫して改善され,セグメンテーションの時間も80~90%短縮される。
関連論文リスト
- Proposal-Based Multiple Instance Learning for Weakly-Supervised Temporal
Action Localization [98.66318678030491]
微弱に監督された時間的行動ローカライゼーションは、トレーニング中にビデオレベルのカテゴリラベルのみを持つ未トリミングビデオのアクションをローカライズし、認識することを目的としている。
本稿では,提案手法をベースとしたP-MIL(Multiple Instance Learning)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T02:48:04Z) - Leveraging triplet loss for unsupervised action segmentation [0.0]
本稿では,アクションセグメンテーションタスクに適したアクション表現を,単一入力ビデオ自体から学習する,完全に教師なしのフレームワークを提案する。
本手法は,三重項損失が類似度分布に作用する浅層ネットワークに根ざした深部距離学習手法である。
このような状況下では、既存の教師なしアプローチと比較して、学習された行動表現の時間的境界を高い品質で回復することに成功した。
論文 参考訳(メタデータ) (2023-04-13T11:10:16Z) - Weakly-supervised Action Localization via Hierarchical Mining [76.00021423700497]
弱教師付きアクションローカライゼーションは、ビデオレベルの分類ラベルだけで、与えられたビデオ内のアクションインスタンスを時間的にローカライズし、分類することを目的としている。
ビデオレベルおよびスニペットレベルでの階層的マイニング戦略,すなわち階層的監視と階層的一貫性マイニングを提案する。
我々は、HiM-NetがTHUMOS14とActivityNet1.3データセットの既存の手法よりも、階層的に監督と一貫性をマイニングすることで、大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2022-06-22T12:19:09Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
本稿では,シーケンス・ツー・シーケンスの区別を文脈的に比較することで学習が,弱い教師付き行動の局所化に不可欠な帰納的バイアスをもたらすことを論じる。
微分可能な動的プログラミングの定式化の下では、FSD(Fen-fine Sequence Distance)とLCS(Longest Common Subsequence)の2つの相補的コントラストが設計されている。
提案手法は,2つのベンチマークにおいて最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T05:13:50Z) - Unsupervised Action Segmentation with Self-supervised Feature Learning
and Co-occurrence Parsing [32.66011849112014]
時間的アクションセグメンテーションは、ビデオの各フレームをアクションラベルで分類するタスクである。
本研究では,ラベル付けされていないビデオのコーパスで動作する自己教師型手法を探索し,ビデオ全体にわたる時間的セグメントのセットを予測する。
我々は,行動の構造に基づくサブアクション間の相関を捉えるだけでなく,そのサブアクションの時間的軌跡を正確かつ一般的な方法で推定する,新しい共起動作解析アルゴリズムであるCAPを開発した。
論文 参考訳(メタデータ) (2021-05-29T00:29:40Z) - Action Shuffling for Weakly Supervised Temporal Localization [22.43209053892713]
本稿では,行動の秩序感応性と位置感応性を解析する。
それらを自己拡張学習フレームワークに具体化し、弱教師付きアクションローカライゼーション性能を改善する。
論文 参考訳(メタデータ) (2021-05-10T09:05:58Z) - Modeling long-term interactions to enhance action recognition [81.09859029964323]
本稿では,フレームレベルと時間レベルの両方でオブジェクト間の相互作用のセマンティクスを利用する,エゴセントリックなビデオのアンダースタンドアクションに対する新しいアプローチを提案する。
ユーザの手とほぼ対応するプライマリ領域と、相互作用するオブジェクトに対応する可能性のあるセカンダリ領域のセットを入力として、領域ベースのアプローチを使用する。
提案手法は, 標準ベンチマークの動作認識において, 最先端技術よりも優れている。
論文 参考訳(メタデータ) (2021-04-23T10:08:15Z) - Temporally-Weighted Hierarchical Clustering for Unsupervised Action
Segmentation [96.67525775629444]
アクションセグメンテーションとは、ビデオにおける意味的に一貫した視覚概念の境界を推測することを指す。
ビデオ中のセグメンテーション動作に対して,トレーニングを必要としない完全自動かつ教師なしのアプローチを提案する。
提案手法は,ビデオの意味的に一貫性のあるフレームをグループ化できる効果的な時間重み付き階層クラスタリングアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-20T23:30:01Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
本研究では,スポーツビデオにサブアクションの手動アノテーションを付加した新しいデータセットを構築し,その上に時間的行動解析を行う。
スポーツ活動は通常、複数のサブアクションから構成されており、このような時間構造に対する意識は、行動認識に有益であることを示す。
また,時間的解析手法を多数検討し,そのラベルを知らずにトレーニングデータからサブアクションをマイニングできる改良手法を考案した。
論文 参考訳(メタデータ) (2020-05-20T17:45:18Z) - Hierarchical Attention Network for Action Segmentation [45.19890687786009]
イベントの時間的セグメンテーションは、ビデオにおける人間の行動の自動認識のための重要なタスクであり、前駆体である。
我々は、時間とともに行動間の関係をよりよく学習できる、エンドツーエンドの教師あり学習手法を提案する。
我々は,MERLショッピング,50サラダ,ジョージア技術エゴセントリックデータセットなど,公開ベンチマークデータセットの課題を評価する。
論文 参考訳(メタデータ) (2020-05-07T02:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。