Quantum harmonic oscillators and thermalization
- URL: http://arxiv.org/abs/2110.05737v2
- Date: Tue, 27 Sep 2022 06:07:05 GMT
- Title: Quantum harmonic oscillators and thermalization
- Authors: Hyeong-Chan Kim and Youngone Lee
- Abstract summary: We write down the first law for thermalization in the same form as that for ordinary thermodynamics.
We obtain the oscillator's energy undergoing thermalization as a function of entropy and its time derivative.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a quantum harmonic oscillator undergoing thermalization. To describe
the thermalization process, we generalize the Ermakov-Lewis-Riesenfeld (ELR)
invariant method for the oscillator. After imposing appropriate conditions on
the thermalization process, we introduce an ansatz equation that describes the
time evolution effectively. We write down the first law for thermalization in
the same form as that for ordinary thermodynamics. Here, the thermalization
effect appears through a change of the ELR frequency. Finally, we obtain the
oscillator's energy undergoing thermalization as a function of entropy and its
time derivative.
Related papers
- Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - The laws of thermodynamics for quantum dissipative systems: A
quasi-equilibrium Helmholtz energy approach [0.0]
We investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states.
We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator.
arXiv Detail & Related papers (2022-05-23T23:05:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Thermodynamics of a Quantum Annealer [6.85316573653194]
We investigate the properties of the D-Wave quantum annealers from a thermodynamical perspective.
We performed a number of experiments on the D-Wave 2000Q via the open access cloud server Leap.
arXiv Detail & Related papers (2020-03-04T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.