論文の概要: Event-Based high-speed low-latency fiducial marker tracking
- arxiv url: http://arxiv.org/abs/2110.05819v1
- Date: Tue, 12 Oct 2021 08:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-13 14:39:15.257718
- Title: Event-Based high-speed low-latency fiducial marker tracking
- Title(参考訳): イベントベース高速低遅延画像マーカー追跡
- Authors: Adam Loch, Germain Haessig, Markus Vincze
- Abstract要約: 本稿では,リアルタイム,低レイテンシ,自由度6自由度ポーズ推定のためのエンドツーエンドパイプラインを提案する。
イベントベースのセンサを高速に利用して空間変換を直接改善する。
このアプローチでは,CPUリソースのみに依存しながら,最大156kHzのレートでポーズ推定を行うことができる。
- 参考スコア(独自算出の注目度): 15.052022635853799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion and dynamic environments, especially under challenging lighting
conditions, are still an open issue for robust robotic applications. In this
paper, we propose an end-to-end pipeline for real-time, low latency, 6
degrees-of-freedom pose estimation of fiducial markers. Instead of achieving a
pose estimation through a conventional frame-based approach, we employ the
high-speed abilities of event-based sensors to directly refine the spatial
transformation, using consecutive events. Furthermore, we introduce a novel
two-way verification process for detecting tracking errors by backtracking the
estimated pose, allowing us to evaluate the quality of our tracking. This
approach allows us to achieve pose estimation at a rate up to 156~kHz, while
only relying on CPU resources. The average end-to-end latency of our method is
3~ms. Experimental results demonstrate outstanding potential for robotic tasks,
such as visual servoing in fast action-perception loops.
- Abstract(参考訳): 動きと動的環境、特に困難な照明条件下では、ロバストなロボットアプリケーションにとって依然としてオープンな問題である。
本稿では,実時間,低レイテンシ,自由度6自由度姿勢推定のためのエンドツーエンドパイプラインを提案する。
従来のフレームベースアプローチでポーズ推定を行う代わりに、連続するイベントを用いて、空間変換を直接洗練するためにイベントベースのセンサの高速能力を利用する。
さらに,推定された姿勢をバックトラッキングすることで追跡誤差を検出できる新しい双方向検証手法を導入することで,追跡の質を評価することができる。
このアプローチでは,CPUリソースのみに依存しながら,最大156〜kHzのレートでポーズ推定を行うことができる。
提案手法の平均終端レイテンシは3~msである。
実験の結果,高速な動作知覚ループにおける視覚サーボなどのロボットタスクに顕著な可能性を示した。
関連論文リスト
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Real-time 6-DoF Pose Estimation by an Event-based Camera using Active
LED Markers [12.932177576177281]
本稿では,能動LEDマーカー(ALM)を用いたイベントベースのポーズ推定システムを提案する。
提案アルゴリズムは、SI3kilo Hertzの出力速度を維持しながら、SI0.5ミリ秒未満のレイテンシでリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2023-10-25T13:14:12Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
イベントカメラが優れており、高速移動物体の衝突位置を正確に推定するアプリケーションを実証する。
イベントデータを低レイテンシでエンコードするために,Binary Event History Image(BEHI)と呼ばれる軽量なイベント表現を導入する。
計算制約のある組込みプラットフォーム上でも最大13m/sの速さで, 異なる場所をターゲットとした球のキャッチにおいて, 81%の成功率を達成することができることを示す。
論文 参考訳(メタデータ) (2023-04-14T15:23:28Z) - Fast Event-based Optical Flow Estimation by Triplet Matching [13.298845944779108]
イベントカメラは、従来のカメラ(低レイテンシ、高ダイナミックレンジ、低電力など)よりも利点がある。
イベントのパケットを扱う光フロー推定法は、正確性のために速度をトレードオフする。
本稿では,三重項マッチングに基づく新しい光フロー推定手法を提案する。
論文 参考訳(メタデータ) (2022-12-23T09:12:16Z) - Are We Ready for Vision-Centric Driving Streaming Perception? The ASAP
Benchmark [23.872360763782037]
ASAPは、自律運転における視覚中心の知覚のオンラインパフォーマンスを評価する最初のベンチマークである。
12Hzの原画像の高フレームレートラベルを生成するためのアノテーション拡張パイプラインを提案する。
ASAPベンチマークでは、モデルランクが異なる制約の下で変化することを示す総合的な実験結果が示されている。
論文 参考訳(メタデータ) (2022-12-17T16:32:15Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
本稿では,イベントカメラを用いた物体検出のための新しいバックボーンであるリカレントビジョントランス (RVT) を提案する。
RVTは、イベントベースのオブジェクト検出で最先端のパフォーマンスに到達するために、ゼロからトレーニングすることができる。
私たちの研究は、イベントベースのビジョンを超えた研究に役立ち得る効果的なデザイン選択に、新たな洞察をもたらします。
論文 参考訳(メタデータ) (2022-12-11T20:28:59Z) - PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras [4.110120522045467]
イベントカメラは、動的環境における高速な視覚センシングを保証できるが、ロボットのエゴモーションによって引き起こされる高いデータ速度に追従できる追跡アルゴリズムを必要とする。
本稿では,EROS(Exponential Reduced Ordinal Surface)データ表現を利用してイベント・バイ・イベント処理とトラッキングを分離する新しいトラッキング手法を提案する。
エアホッケーパックが表面を滑り落ちるのをトラッキングするタスクを提案し、将来はiCubロボットを正確に時間通りに目標に到達させることが目的である。
論文 参考訳(メタデータ) (2022-05-16T13:23:52Z) - Predictive Visual Tracking: A New Benchmark and Baseline Approach [27.87099869398515]
実世界のシナリオでは、画像ストリームのオンボード処理時間が必然的に追跡結果と実世界の状態との間に不一致をもたらす。
既存のビジュアルトラッキングベンチマークは、一般的にトラッカーをオフラインで実行し、評価においてそのような遅延を無視する。
本研究は,より現実的な遅延認識トラッキング問題に対処することを目的としている。
論文 参考訳(メタデータ) (2021-03-08T01:50:05Z) - StrObe: Streaming Object Detection from LiDAR Packets [73.27333924964306]
ローリングシャッターのLiDARはパケットのストリームとして出力され、それぞれ360degのカバレッジのセクターをカバーする。
現代の認識アルゴリズムは、データを処理する前に全スイープが構築されるのを待つ。
本稿では,LiDARパケットを取り込み,全スイープが構築されるのを待たずに検出ストリームを出力することで,レイテンシを最小化する新しいアプローチであるStrObeを提案する。
論文 参考訳(メタデータ) (2020-11-12T14:57:44Z) - Towards Streaming Perception [70.68520310095155]
本稿では、リアルタイムオンライン知覚のための単一のメトリクスにレイテンシと精度を協調的に統合するアプローチを提案する。
この指標の背後にある重要な洞察は、瞬間ごとに認識スタック全体の出力を共同で評価することである。
本稿では,都市ビデオストリームにおけるオブジェクト検出とインスタンスセグメンテーションの具体的タスクに注目し,高品質で時間依存的なアノテーションを備えた新しいデータセットを寄贈する。
論文 参考訳(メタデータ) (2020-05-21T01:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。