論文の概要: Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design
- arxiv url: http://arxiv.org/abs/2110.06186v1
- Date: Tue, 12 Oct 2021 17:34:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-11 16:43:40.823948
- Title: Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design
- Title(参考訳): 構造設計の離散最適化におけるメタヒューリスティック法のパラメータチューニング戦略
- Authors: Iv\'an Negrin and Dirk Roose and Ernesto Chagoy\'en
- Abstract要約: 本稿では, 鉄筋コンクリート(RC)構造物の設計最適化のためのメタヒューリスティック手法のパラメータを調整するためのいくつかの手法を提案する。
平均性能曲線の下での面積に基づいて, 実用性指標を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents several strategies to tune the parameters of
metaheuristic methods for (discrete) design optimization of reinforced concrete
(RC) structures. A novel utility metric is proposed, based on the area under
the average performance curve. The process of modelling, analysis and design of
realistic RC structures leads to objective functions for which the evaluation
is computationally very expensive. To avoid costly simulations, two types of
surrogate models are used. The first one consists of the creation of a database
containing all possible solutions. The second one uses benchmark functions to
create a discrete sub-space of them, simulating the main features of realistic
problems. Parameter tuning of four metaheuristics is performed based on two
strategies. The main difference between them is the parameter control
established to perform partial assessments. The simplest strategy is suitable
to tune good `generalist' methods, i.e., methods with good performance
regardless the parameter configuration. The other one is more expensive, but is
well suited to assess any method. Tuning results prove that Biogeography-Based
Optimization, a relatively new evolutionary algorithm, outperforms other
methods such as GA or PSO for such optimization problems, due to its particular
approach of applying recombination and mutation operators.
- Abstract(参考訳): 本稿では, 鉄筋コンクリート(RC)構造物の設計最適化のためのメタヒューリスティック手法のパラメータを調整するためのいくつかの手法を提案する。
平均性能曲線の下の領域に基づいて,新しい実用度指標を提案する。
現実的なRC構造のモデリング、解析、設計のプロセスは、その評価が計算的に非常に高価である客観的な機能をもたらす。
コストのかかるシミュレーションを避けるため、2種類のサロゲートモデルが使用される。
最初の1つは、可能なすべてのソリューションを含むデータベースの作成です。
2つ目は、ベンチマーク関数を使用して、個々のサブスペースを作成し、現実的な問題の主な特徴をシミュレートする。
4つのメタヒューリスティックのパラメータチューニングは2つの戦略に基づいて行われる。
両者の主な違いは、部分的な評価を行うために確立されたパラメータ制御である。
最も単純な戦略は、パラメータの設定にかかわらず、優れた'ジェネリスト'メソッド、すなわち優れたパフォーマンスを持つメソッドをチューニングするのに適している。
もう1つはより高価だが、あらゆる方法を評価するのに適している。
チューニングの結果、比較的新しい進化的アルゴリズムであるバイオジオグラフィーに基づく最適化は、リコンビネーションや突然変異演算子を適用するという特定のアプローチにより、GAやPSOといった他の手法よりも優れていることが証明された。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
我々は,ガウス過程(GP)の枠組みに基づく新しいTO手法を開発し,その平均関数はディープニューラルネットワークを介してパラメータ化される。
本手法を商用ソフトウェアに実装した従来のTO手法に対して検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
論文 参考訳(メタデータ) (2024-08-07T01:01:35Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - DADO -- Low-Cost Query Strategies for Deep Active Design Optimization [1.6298921134113031]
我々は,多目的設計最適化問題における計算コストを削減するために,自己最適化のための2つの選択戦略を提案する。
我々は流体力学の領域から大規模データセットの戦略を評価し、モデルの性能を決定するために2つの新しい評価指標を導入する。
論文 参考訳(メタデータ) (2023-07-10T13:01:27Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
本稿では,機械学習モデルにおける任意のハイパーパラメータの任意の集合に対する近似値を求めるためのエージェントベース協調手法を提案する。
提案モデルの動作,特に設計パラメータの変化に対して,機械学習およびグローバル関数最適化アプリケーションの両方で検討する。
論文 参考訳(メタデータ) (2023-03-03T21:10:17Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
現在、多くの研究が、パラメータのごく一部のみを微調整し、異なるタスク間で共有されるパラメータのほとんどを保持することを提案している。
これらの手法は, いずれも細粒度モデルであり, 新たな理論的解析を行う。
我々の理論に根ざした空間性の有効性にもかかわらず、調整可能なパラメータをどう選ぶかという問題はまだ未解決のままである。
論文 参考訳(メタデータ) (2022-11-28T17:41:48Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
本稿では,大規模乱数場の適応的,微分可能なパラメータ化手法を提案する。
開発した手法は主成分分析(PCA)に基づくが,目的関数の振る舞いを考慮した主成分の純粋にデータ駆動に基づく基礎を変更する。
最適パラメータ分解のための3つのアルゴリズムを2次元合成履歴マッチングの目的に適用した。
論文 参考訳(メタデータ) (2020-06-02T18:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。