Causal Discovery from Conditionally Stationary Time Series
- URL: http://arxiv.org/abs/2110.06257v2
- Date: Fri, 23 Feb 2024 16:41:54 GMT
- Title: Causal Discovery from Conditionally Stationary Time Series
- Authors: Carles Balsells-Rodas, Ruibo Tu, Hedvig Kjellstrom, Yingzhen Li
- Abstract summary: State-Dependent Causal Inference (SDCI) is able to recover the underlying causal dependencies, provably with fully-observed states and empirically with hidden states.
improved results over non-causal RNNs on modeling NBA player movements demonstrate the potential of our method.
- Score: 18.645887749731923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery, i.e., inferring underlying causal relationships from
observational data, has been shown to be highly challenging for AI systems. In
time series modeling context, traditional causal discovery methods mainly
consider constrained scenarios with fully observed variables and/or data from
stationary time-series. We develop a causal discovery approach to handle a wide
class of non-stationary time-series that are conditionally stationary, where
the non-stationary behaviour is modeled as stationarity conditioned on a set of
(possibly hidden) state variables. Named State-Dependent Causal Inference
(SDCI), our approach is able to recover the underlying causal dependencies,
provably with fully-observed states and empirically with hidden states. The
latter is confirmed by experiments on synthetic linear system and nonlinear
particle interaction data, where SDCI achieves superior performance over
baseline causal discovery methods. Improved results over non-causal RNNs on
modeling NBA player movements demonstrate the potential of our method and
motivate the use of causality-driven methods for forecasting.
Related papers
- A Practical Approach to Causal Inference over Time [17.660953125689105]
We define causal interventions and their effects over time on discrete-time processes (DSPs)
We show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM)
The resulting causal VAR framework allows us to perform causal inference over time from observational time series data.
arXiv Detail & Related papers (2024-10-14T13:45:20Z) - CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Identifying Nonstationary Causal Structures with High-Order Markov Switching Models [32.86541172199634]
Causal discovery in time series is a rapidly evolving field with a wide variety of applications in other areas such as climate science and neuroscience.
In this work we address nonstationarity via regime-dependent causal structures.
arXiv Detail & Related papers (2024-06-25T16:38:27Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
Real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera.
Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations.
However, such approaches can fail in the presence of temporally correlated noise in the observations.
arXiv Detail & Related papers (2021-10-17T15:21:27Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.