Causal Discovery from Conditionally Stationary Time Series
- URL: http://arxiv.org/abs/2110.06257v3
- Date: Wed, 12 Feb 2025 16:47:01 GMT
- Title: Causal Discovery from Conditionally Stationary Time Series
- Authors: Carles Balsells-Rodas, Xavier Sumba, Tanmayee Narendra, Ruibo Tu, Gabriele Schweikert, Hedvig Kjellstrom, Yingzhen Li,
- Abstract summary: We develop a causal discovery approach to handle a wide class of nonstationary time series.
Named State-Dependent Causal Inference (SDCI), our approach is able to recover the underlying causal dependencies.
Empirical experiments on nonlinear particle interaction data and gene regulatory networks demonstrate SDCI's superior performance.
- Score: 14.297325665581353
- License:
- Abstract: Causal discovery, i.e., inferring underlying causal relationships from observational data, is highly challenging for AI systems. In a time series modeling context, traditional causal discovery methods mainly consider constrained scenarios with fully observed variables and/or data from stationary time-series. We develop a causal discovery approach to handle a wide class of nonstationary time series that are conditionally stationary, where the nonstationary behaviour is modeled as stationarity conditioned on a set of latent state variables. Named State-Dependent Causal Inference (SDCI), our approach is able to recover the underlying causal dependencies, with provable identifiablity for the state-dependent causal structures. Empirical experiments on nonlinear particle interaction data and gene regulatory networks demonstrate SDCI's superior performance over baseline causal discovery methods. Improved results over non-causal RNNs on modeling NBA player movements demonstrate the potential of our method and motivate the use of causality-driven methods for forecasting.
Related papers
- CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Identifying Nonstationary Causal Structures with High-Order Markov Switching Models [32.86541172199634]
Causal discovery in time series is a rapidly evolving field with a wide variety of applications in other areas such as climate science and neuroscience.
In this work we address nonstationarity via regime-dependent causal structures.
arXiv Detail & Related papers (2024-06-25T16:38:27Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.