論文の概要: Learning Compact Metrics for MT
- arxiv url: http://arxiv.org/abs/2110.06341v1
- Date: Tue, 12 Oct 2021 20:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 14:34:30.148690
- Title: Learning Compact Metrics for MT
- Title(参考訳): MTのためのコンパクトメトリックの学習
- Authors: Amy Pu, Hyung Won Chung, Ankur P. Parikh, Sebastian Gehrmann, Thibault
Sellam
- Abstract要約: 最先端多言語モデルであるRemBERTを用いて,多言語性とモデルキャパシティのトレードオフについて検討する。
モデルのサイズが実際に言語間移動のボトルネックであることを示し、蒸留がこのボトルネックにどのように対処できるかを示す。
提案手法は,バニラ微調整よりも最大10.5%向上し,パラメータの3分の1しか使用せず,RemBERTの性能の92.6%に達する。
- 参考スコア(独自算出の注目度): 21.408684470261342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in machine translation and multilingual text generation
have led researchers to adopt trained metrics such as COMET or BLEURT, which
treat evaluation as a regression problem and use representations from
multilingual pre-trained models such as XLM-RoBERTa or mBERT. Yet studies on
related tasks suggest that these models are most efficient when they are large,
which is costly and impractical for evaluation. We investigate the trade-off
between multilinguality and model capacity with RemBERT, a state-of-the-art
multilingual language model, using data from the WMT Metrics Shared Task. We
present a series of experiments which show that model size is indeed a
bottleneck for cross-lingual transfer, then demonstrate how distillation can
help addressing this bottleneck, by leveraging synthetic data generation and
transferring knowledge from one teacher to multiple students trained on related
languages. Our method yields up to 10.5% improvement over vanilla fine-tuning
and reaches 92.6% of RemBERT's performance using only a third of its
parameters.
- Abstract(参考訳): 機械翻訳と多言語テキスト生成の最近の進歩により、COMETやBLEURTのような訓練されたメトリクスが採用され、回帰問題としての評価を扱い、XLM-RoBERTaやmBERTのような多言語事前学習モデルの表現を使用するようになった。
しかし、関連するタスクの研究は、これらのモデルが大きければ最も効率的であり、評価には費用がかかり実用的でないことを示唆している。
WMT Metrics Shared Taskのデータを用いて、最先端多言語モデルRemBERTによる多言語性とモデル容量のトレードオフについて検討する。
本研究では, モデルサイズが実際に言語間移動のボトルネックとなることを示す一連の実験を行い, 人工データ生成を活用し, 関連する言語で訓練された複数の生徒に知識を伝達することによって, 蒸留がいかにこのボトルネックに対処できるかを実証する。
提案手法は,バニラ微調整よりも最大10.5%向上し,パラメータの3分の1しか使用せず,RemBERTの性能の92.6%に達する。
関連論文リスト
- CroissantLLM: A Truly Bilingual French-English Language Model [42.03897426049679]
英語とフランス語のトークンセットを事前訓練した1.3B言語モデルであるCroissantLLMを紹介する。
我々は、英語とフランス語の事前学習データ比率1:1で、本質的なバイリンガルモデルを訓練するアプローチを開拓した。
英語以外のパフォーマンスを評価するため、新しいベンチマークである FrenchBench を作成します。
論文 参考訳(メタデータ) (2024-02-01T17:17:55Z) - Distilling Efficient Language-Specific Models for Cross-Lingual Transfer [75.32131584449786]
多言語変換器(MMT)は多言語間変換学習に広く用いられている。
MMTの言語カバレッジは、モデルサイズ、推論時間、エネルギ、ハードウェアコストの点で、必要以上にコストがかかる。
本稿では,MMTから圧縮された言語固有のモデルを抽出し,言語間移動のための元のMTのキャパシティを保持することを提案する。
論文 参考訳(メタデータ) (2023-06-02T17:31:52Z) - MicroBERT: Effective Training of Low-resource Monolingual BERTs through
Parameter Reduction and Multitask Learning [12.640283469603357]
トランスフォーマー言語モデル(TLM)は、ほとんどのNLPタスクには必須であるが、必要な事前学習データが多いため、低リソース言語では作成が困難である。
本研究では,低リソース環境下でモノリンガルなTLMを訓練する2つの手法について検討する。
7つの多様な言語から得られた結果から,私たちのモデルであるMicroBERTは,典型的なモノリンガルなTLM事前学習手法と比較して,下流タスク評価において顕著な改善を達成できたことが示唆された。
論文 参考訳(メタデータ) (2022-12-23T18:18:20Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z) - Building Machine Translation Systems for the Next Thousand Languages [102.24310122155073]
1500以上の言語を対象としたクリーンでWebマイニングされたデータセットの構築、低サービス言語のための実践的なMTモデルの開発、これらの言語に対する評価指標の限界の検証という3つの研究領域における結果について述べる。
我々の研究は、現在調査中の言語のためのMTシステムの構築に取り組んでいる実践者にとって有用な洞察を提供し、データスパース設定における多言語モデルの弱点を補完する研究の方向性を強調したいと考えています。
論文 参考訳(メタデータ) (2022-05-09T00:24:13Z) - MergeDistill: Merging Pre-trained Language Models using Distillation [5.396915402673246]
我々は、最小限の依存関係で彼らの資産を最大限に活用できる方法で、事前訓練されたLMをマージするフレームワークであるMergeDistillを提案する。
我々は,既存の教師LMと,何桁ものデータと固定モデルキャパシティで訓練された教師LMとの競争力や性能を向上する訓練学生LMを活用して,実践的にフレームワークの適用性を実証する。
論文 参考訳(メタデータ) (2021-06-05T08:22:05Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - Transferring Monolingual Model to Low-Resource Language: The Case of
Tigrinya [0.0]
本稿では,強力なソース言語モデルを採用するためのコスト効率のよいトランスファー学習手法を提案する。
与えられたTigrinya感情分析データセットの10k例だけで、英語のXLNetは78.88%のF1スコアを達成した。
CLSデータセット上の微調整(英: Fine-tuning)XLNetモデルでは,mBERTと比較して有望な結果が得られる。
論文 参考訳(メタデータ) (2020-06-13T18:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。