SynthFormer: Equivariant Pharmacophore-based Generation of Synthesizable Molecules for Ligand-Based Drug Design
- URL: http://arxiv.org/abs/2410.02718v2
- Date: Wed, 29 Jan 2025 15:15:23 GMT
- Title: SynthFormer: Equivariant Pharmacophore-based Generation of Synthesizable Molecules for Ligand-Based Drug Design
- Authors: Zygimantas Jocys, Zhanxing Zhu, Henriette M. G. Willems, Katayoun Farrahi,
- Abstract summary: We introduce SynthFormer, a novel machine learning model that generates fully synthesizable molecules, structured as synthetic trees, by introducing both 3D information and pharmacophores as input.
It is a first-of-its-kind approach that could provide capabilities for designing active molecules based on pharmacophores.
- Score: 19.578382119811238
- License:
- Abstract: Drug discovery is a complex, resource-intensive process requiring significant time and cost to bring new medicines to patients. Many generative models aim to accelerate drug discovery, but few produce synthetically accessible molecules. Conversely, synthesis-focused models do not leverage the 3D information crucial for effective drug design. We introduce SynthFormer, a novel machine learning model that generates fully synthesizable molecules, structured as synthetic trees, by introducing both 3D information and pharmacophores as input. SynthFormer features a 3D equivariant graph neural network to encode pharmacophores, followed by a Transformer-based synthesis-aware decoding mechanism for constructing synthetic trees as a sequence of tokens. It is a first-of-its-kind approach that could provide capabilities for designing active molecules based on pharmacophores, exploring the local synthesizable chemical space around hit molecules and optimizing their properties. We demonstrate its effectiveness through various challenging tasks, including designing active compounds for a range of proteins, performing hit expansion and optimizing molecular properties.
Related papers
- SDDBench: A Benchmark for Synthesizable Drug Design [31.739548311094843]
We propose a new, data-driven metric to evaluate molecule synthesizability.
Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score.
To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models.
arXiv Detail & Related papers (2024-11-13T03:08:33Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Generative Artificial Intelligence for Navigating Synthesizable Chemical Space [25.65907958071386]
We introduce SynFormer, a generative modeling framework designed to efficiently explore and navigate synthesizable chemical space.
By incorporating a scalable transformer architecture and a diffusion module for building block selection, SynFormer surpasses existing models in synthesizable molecular design.
arXiv Detail & Related papers (2024-10-04T15:09:05Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints [16.21161274235011]
We introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and buyable reactants to sequentially build new molecules.
By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities.
arXiv Detail & Related papers (2024-05-02T10:15:59Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design [2.17167311150369]
We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding.
This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes.
arXiv Detail & Related papers (2021-10-12T22:43:25Z) - RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
Novo Drug Design [75.14290780116002]
We train deep graph neural networks to approximate the outputs of a retrosynthesis planning software.
Our approach finds molecules predicted to be more likely to be antibiotics while maintaining good drug-like properties and being easily synthesizable.
arXiv Detail & Related papers (2020-11-25T22:04:16Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.