Robust Neural Regression via Uncertainty Learning
- URL: http://arxiv.org/abs/2110.06395v1
- Date: Tue, 12 Oct 2021 23:19:13 GMT
- Title: Robust Neural Regression via Uncertainty Learning
- Authors: Akib Mashrur and Wei Luo and Nayyar A. Zaidi and Antonio Robles-Kelly
- Abstract summary: Deep neural networks tend to underestimate uncertainty and produce overly confident predictions.
We propose a simple solution by extending the time-tested iterative reweighted least square (IRLS) in generalised linear regression.
We use two sub-networks to parametrise the prediction and uncertainty estimation, enabling easy handling of complex inputs and nonlinear response.
- Score: 5.654198773446211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks tend to underestimate uncertainty and produce overly
confident predictions. Recently proposed solutions, such as MC Dropout and
SDENet, require complex training and/or auxiliary out-of-distribution data. We
propose a simple solution by extending the time-tested iterative reweighted
least square (IRLS) in generalised linear regression. We use two sub-networks
to parametrise the prediction and uncertainty estimation, enabling easy
handling of complex inputs and nonlinear response. The two sub-networks have
shared representations and are trained via two complementary loss functions for
the prediction and the uncertainty estimates, with interleaving steps as in a
cooperative game. Compared with more complex models such as MC-Dropout or
SDE-Net, our proposed network is simpler to implement and more robust
(insensitive to varying aleatoric and epistemic uncertainty).
Related papers
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
Uncertainty estimation in machine learning is paramount for enhancing the reliability and interpretability of predictive models.
We present an adaptation of the Multiple-Input Multiple-Output (MIMO) framework for pixel-wise regression tasks.
arXiv Detail & Related papers (2023-08-14T22:08:28Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Robustness to Pruning Predicts Generalization in Deep Neural Networks [29.660568281957072]
We introduce prunability: the smallest emphfraction of a network's parameters that can be kept while pruning without adversely affecting its training loss.
We show that this measure is highly predictive of a model's generalization performance across a large set of convolutional networks trained on CIFAR-10.
arXiv Detail & Related papers (2021-03-10T11:39:14Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
Quantification of uncertainty is one of the most promising approaches to establish safe machine learning.
One of the most commonly used approaches so far is Monte Carlo dropout, which is computationally cheap and easy to apply in practice.
We propose a new objective, referred to as second-moment loss ( UCI), to address this issue.
arXiv Detail & Related papers (2021-01-07T19:12:06Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Estimating Uncertainty Intervals from Collaborating Networks [15.467208581231848]
We propose a novel method to capture predictive distributions in regression by defining two neural networks with two distinct loss functions.
Specifically, one network approximates the cumulative distribution function, and the second network approximates its inverse.
We benchmark CN against several common approaches on two synthetic and six real-world datasets, including forecasting A1c values in diabetic patients from electronic health records.
arXiv Detail & Related papers (2020-02-12T20:10:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.