論文の概要: Metaparametric Neural Networks for Survival Analysis
- arxiv url: http://arxiv.org/abs/2110.06610v1
- Date: Wed, 13 Oct 2021 10:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 13:36:14.422899
- Title: Metaparametric Neural Networks for Survival Analysis
- Title(参考訳): メタパラメトリックニューラルネットワークによる生存分析
- Authors: Fabio Luis de Mello, J Mark Wilkinson and Visakan Kadirkamanathan
- Abstract要約: 本稿では,既存の生存分析手法を含むメタパラメトリックニューラルネットワークフレームワークを提案する。
このフレームワークにより、サバイバルニューラルネットワークは、基盤となるデータ構造からのジェネリック関数推定の独立性を満足することができる。
- 参考スコア(独自算出の注目度): 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis is a critical tool for the modelling of time-to-event data,
such as life expectancy after a cancer diagnosis or optimal maintenance
scheduling for complex machinery. However, current neural network models
provide an imperfect solution for survival analysis as they either restrict the
shape of the target probability distribution or restrict the estimation to
pre-determined times. As a consequence, current survival neural networks lack
the ability to estimate a generic function without prior knowledge of its
structure. In this article, we present the metaparametric neural network
framework that encompasses existing survival analysis methods and enables their
extension to solve the aforementioned issues. This framework allows survival
neural networks to satisfy the same independence of generic function estimation
from the underlying data structure that characterizes their regression and
classification counterparts. Further, we demonstrate the application of the
metaparametric framework using both simulated and large real-world datasets and
show that it outperforms the current state-of-the-art methods in (i) capturing
nonlinearities, and (ii) identifying temporal patterns, leading to more
accurate overall estimations whilst placing no restrictions on the underlying
function structure.
- Abstract(参考訳): サバイバル分析は、がん診断後の平均寿命や複雑な機械の最適維持スケジュールなど、イベントデータのモデリングにとって重要なツールである。
しかし、現在のニューラルネットワークモデルは、目標確率分布の形状を制限するか、事前決定された時間に推定を制限するため、生存分析に不完全な解決策を提供する。
その結果、現在のサバイバルニューラルネットワークは、その構造を事前に知ることなく、汎用関数を推定する能力が欠けている。
本稿では,既存の生存分析手法を包含するメタパラメトリックニューラルネットワークフレームワークについて述べる。
この枠組みにより、サバイバルニューラルネットワークは、それらの回帰と分類に対応する基盤となるデータ構造から、ジェネリック関数推定の独立性を満足することができる。
さらに,シミュレーションおよび大規模実世界のデータセットを用いたメタパラメトリックフレームワークの適用例を示し,現状の手法よりも優れていることを示す。
(i)非線形性を取り込むこと、
(2)時間的パターンを同定し、基礎となる関数構造に制約を課すことなく、より正確な全体推定を行う。
関連論文リスト
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
多様体容量は、人口幾何学とニューラル多様体の分離性とを結びつける有望な枠組みとして出現している。
本稿では,文脈入力情報を活用することによって,この制限を克服する理論的枠組みを提案する。
我々のフレームワークの表現性の向上は、階層階層の初期段階のディープネットワークにおける表現アンハングメントをキャプチャするが、以前は分析にはアクセスできない。
論文 参考訳(メタデータ) (2024-05-10T23:37:31Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
本稿では,モデル内の変数間の関係を加法的に強制することで,モデルの複雑性と精度のバランスをとるInterpretable-RNN(I-RNN)を提案する。
I-RNNは、時間内に不均一にサンプリングされ、非同期に取得され、データが欠落している臨床時系列の特徴を特に捉えている。
本研究は,院内死亡率予測のためのPhysoronet 2012 ChallengeデータセットのI-RNNモデルと,集中治療室における血行動態の介入を予測するリアルな臨床診断支援タスクについて評価する。
論文 参考訳(メタデータ) (2021-09-15T22:30:19Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - BDNNSurv: Bayesian deep neural networks for survival analysis using
pseudo values [7.707091943385522]
生存データのモデル化と予測のためのベイズ階層的ディープニューラルネットワークモデルを提案する。
従来研究した手法と比較して,提案手法は生存確率のポイント推定を提供することができる。
提案手法を実装したpythonコードが提供されている。
論文 参考訳(メタデータ) (2021-01-07T20:18:43Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Semi-Structured Deep Piecewise Exponential Models [2.7728956081909346]
本稿では,統計学の先進的な概念と深層学習を組み合わせた生存分析のための多目的フレームワークを提案する。
この枠組みを用いてアルツハイマー病の進行を予測することによって概念実証を行う。
論文 参考訳(メタデータ) (2020-11-11T14:41:19Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。