Environment-Assisted Shortcuts to Adiabaticity
- URL: http://arxiv.org/abs/2110.06681v1
- Date: Wed, 13 Oct 2021 12:40:01 GMT
- Title: Environment-Assisted Shortcuts to Adiabaticity
- Authors: Akram Touil, Sebastian Deffner
- Abstract summary: We show that shortcuts to adiabaticity evolve through the adiabatic manifold at all times, solely by controlling the environment.
We construct the unique form of the driving on the environment that enables such dynamics, for a family of composite states of arbitrary dimension.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Envariance is a symmetry exhibited by correlated quantum systems. Inspired by
this "quantum fact of life," we propose a novel method for shortcuts to
adiabaticity which enables the system to evolve through the adiabatic manifold
at all times, solely by controlling the environment. As main results, we
construct the unique form of the driving on the environment that enables such
dynamics, for a family of composite states of arbitrary dimension. We compare
the cost of this environment-assisted technique with that of counterdiabatic
driving, and we illustrate our results for a two-qubit model.
Related papers
- Non-Hermitian Pseudomodes for Strongly Coupled Open Quantum Systems: Unravelings, Correlations and Thermodynamics [0.0]
Pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment.
We show that our approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature.
arXiv Detail & Related papers (2024-01-22T10:41:43Z) - Fixing detailed balance in ancilla-based dissipative state engineering [0.5126361628588283]
Dissipative state engineering is a term for a protocol which prepares the ground state of a Hamiltonian using engineered dissipation or engineered environments.
We argue that this approach has an intrinsic limitation because the ancillas, seen as an effective bath by the system in the weak-coupling limit, do not give the detailed balance expected for a true zero-temperature environment.
We explore overcoming this limitation using a recently developed technique from open-quantum-systems called pseudomodes.
arXiv Detail & Related papers (2023-10-19T07:43:23Z) - Perturbation theory under the truncated Wigner approximation reveals how
system-environment entanglement formation drives quantum decoherence [0.0]
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment.
We introduce a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory.
We show that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.
arXiv Detail & Related papers (2022-06-22T18:17:28Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Numerically exact open quantum systems simulations for arbitrary
environments using automated compression of environments [0.0]
We present a numerically exact method for simulating open quantum systems with arbitrary environments.
Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant.
We demonstrate the power of this method by applying it to problems with bosonic, fermionic, and spin environments.
arXiv Detail & Related papers (2021-01-05T17:07:05Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Sudden death of entanglement induced by a minimal thermal environment [0.0]
We study the dynamics of two interacting two-level systems having one of them isolated and the other coupled to a single mode electromagnetic field in a thermal state.
We find that both sudden death and sudden birth of entanglement may occur in such a simple system.
arXiv Detail & Related papers (2020-07-17T17:55:35Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.