Engineering qubit dynamics in open systems with photonic synthetic lattices
- URL: http://arxiv.org/abs/2412.04701v1
- Date: Fri, 06 Dec 2024 01:27:58 GMT
- Title: Engineering qubit dynamics in open systems with photonic synthetic lattices
- Authors: Francesco Di Colandrea, Tareq Jaouni, John Grace, Dilip Paneru, Mirko Arienzo, Alessio D'Errico, Ebrahim Karimi,
- Abstract summary: We establish a precise mapping between the global unitary dynamics and the quantum operation involving the system.
We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.
- Score: 0.0
- License:
- Abstract: The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise mapping between the global unitary dynamics and the quantum operation involving the system, wherein the system is a single qubit, and the environment is modeled as a discrete lattice space. This approach enables the implementation of arbitrary noise operations on single-polarization qubits using a minimal set of three liquid-crystal metasurfaces, whose transverse distribution of the optic axes can be patterned to reproduce the target process. We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.
Related papers
- A purified input-output pseudomode model for structured open quantum systems [0.8901227918730564]
We present a model consisting of purified auxiliary bosonic modes to describe, alongside properties of the system, the dynamics of environmental observables for bosonic baths prepared in non-Gaussian initial states.
We numerically exemplify this method by simulating non-Markovian multi-photon transfer processes on a coupled cavity waveguide system in the large time delay regime.
arXiv Detail & Related papers (2024-12-05T15:47:10Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Open quantum dynamics for plant motions [0.0]
Schr"odinger equations that govern the dynamics of open quantum systems are given by the equations for signal processing.
Brownian motion that drives the wave function of the system does not represent noise, but provides purely the arrival of new information.
It is argued that biological systems can process environmental signals relatively close to the Landauer limit of computation.
arXiv Detail & Related papers (2022-09-05T13:20:27Z) - Perturbation theory under the truncated Wigner approximation reveals how
system-environment entanglement formation drives quantum decoherence [0.0]
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment.
We introduce a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory.
We show that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.
arXiv Detail & Related papers (2022-06-22T18:17:28Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Numerically exact open quantum systems simulations for arbitrary
environments using automated compression of environments [0.0]
We present a numerically exact method for simulating open quantum systems with arbitrary environments.
Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant.
We demonstrate the power of this method by applying it to problems with bosonic, fermionic, and spin environments.
arXiv Detail & Related papers (2021-01-05T17:07:05Z) - Excitation dynamics in chain-mapped environments [0.0]
Chain mapping is a most powerful tool for the simulation of open quantum system dynamics.
We investigate the transport of excitations in a chain-mapped bosonic environment.
arXiv Detail & Related papers (2020-11-23T09:22:24Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.