Fixing detailed balance in ancilla-based dissipative state engineering
- URL: http://arxiv.org/abs/2310.12539v1
- Date: Thu, 19 Oct 2023 07:43:23 GMT
- Title: Fixing detailed balance in ancilla-based dissipative state engineering
- Authors: Neill Lambert, Mauro Cirio, Jhen-dong Lin, Paul Menczel, Pengfei
Liang, Franco Nori
- Abstract summary: Dissipative state engineering is a term for a protocol which prepares the ground state of a Hamiltonian using engineered dissipation or engineered environments.
We argue that this approach has an intrinsic limitation because the ancillas, seen as an effective bath by the system in the weak-coupling limit, do not give the detailed balance expected for a true zero-temperature environment.
We explore overcoming this limitation using a recently developed technique from open-quantum-systems called pseudomodes.
- Score: 0.5126361628588283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dissipative state engineering is a general term for a protocol which prepares
the ground state of a complex many-body Hamiltonian using engineered
dissipation or engineered environments. Recently, it was shown that a version
of this protocol, where the engineered environment consists of one or more
dissipative qubit ancillas tuned to be resonant with the low-energy transitions
of a many-body system, resulted in the combined system evolving to reasonable
approximation to the ground state. This potentially broadens the applicability
of the method beyond non-frustrated systems, to which it was previously
restricted. Here we argue that this approach has an intrinsic limitation
because the ancillas, seen as an effective bath by the system in the
weak-coupling limit, do not give the detailed balance expected for a true
zero-temperature environment. Our argument is based on the study of a similar
approach employing linear coupling to bosonic ancillas. We explore overcoming
this limitation using a recently developed technique from open-quantum-systems
called pseudomodes. With a simple example model of a 1D quantum Ising chain, we
show that detailed balance can be fixed, and a more accurate estimation of the
ground state obtained, at the cost of two additional unphysical dissipative
modes and the extrapolation error of implementing those modes in physical
systems.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Shortcuts to adiabaticity with general two-level non-Hermitian systems [0.0]
Adiabaticity is a fast process which reproduces the same final state as the adiabatic process in a finite or even shorter time.
We propose a shortcuts to adiabaticity technique which is based on a transitionless quantum driving algorithm.
We show that the general Hamiltonian the off-diagonal elements of which are not conjugate to each other can be implemented in many physical systems.
arXiv Detail & Related papers (2024-04-12T02:15:07Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Perturbation theory under the truncated Wigner approximation reveals how
system-environment entanglement formation drives quantum decoherence [0.0]
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment.
We introduce a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory.
We show that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.
arXiv Detail & Related papers (2022-06-22T18:17:28Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Experimental implementation of precisely tailored light-matter
interaction via inverse engineering [5.131683740032632]
shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes.
Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system.
We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening.
arXiv Detail & Related papers (2021-01-29T08:17:01Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Quantum digital cooling [0.0]
We introduce a method for digital preparation of ground states of simulated Hamiltonians inspired by cooling in nature.
The cold bath is simulated by a single ancillary qubit, which is reset periodically and coupled to the system non-perturbatively.
We optimize two cooling protocols based on weak-coupling and strong-coupling approaches.
arXiv Detail & Related papers (2019-09-23T18:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.