Coherent energy fluctuation theorems: theory and experiment
- URL: http://arxiv.org/abs/2110.07061v1
- Date: Wed, 13 Oct 2021 22:21:53 GMT
- Title: Coherent energy fluctuation theorems: theory and experiment
- Authors: K. Khan, J. Sales Ara\'ujo, W. F. Magalh\~aes, G. H. Aguilar, and B.
de Lima Bernardo
- Abstract summary: This paper reports theoretical and experimental results regarding two FT for a new quantity, named coherent energy.
We also demonstrate that this quantity behaves as a thermodynamic arrow of time for unitary evolutions, that is, in the absence of entropy production.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Heat, work and entropy production: the statistical distribution of such
quantities are constrained by the fluctuation theorems (FT), which reveal
crucial properties about the nature of non-equilibrium dynamics. In this paper
we report theoretical and experimental results regarding two FT for a new
quantity, named coherent energy, which is an energy form directly associated
with the coherences of the quantum state. We also demonstrate that this
quantity behaves as a thermodynamic arrow of time for unitary evolutions, that
is, in the absence of entropy production. The experiment is implemented in an
all-optical setup in which the system is encoded in the polarization of one
photon of a pair. The FT are demonstrated using the two-point measurement
protocol, executed using the other photon of the pair, allowing to assess the
probability distributions directly from the outcomes of the experiment.
Related papers
- Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Two-point measurement of entropy production from the outcomes of a
single experiment with correlated photon pairs [0.0]
We provide an experimental demonstration of a quantum fluctuation theorem where the distribution of entropy production is obtained directly from the outcomes of an optical experiment.
The setup consists of entangled photon pairs, one of which is sent an interferometer emulating a finite temperature amplitude damping device.
arXiv Detail & Related papers (2021-08-06T20:24:17Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Single-Atom Verification of the Information-Theoretical Bound of
Irreversibility at the Quantum Level [0.11242503819703256]
In a quantum mechanical fashion, we report the first theoretical prediction and experimental exploration of an information-theoretical bound on the entropy production.
Our finding is fundamental to any quantum thermodynamical process and indicates much difference and complexity in quantum thermodynamics with respect to the conventionally classical counterpart.
arXiv Detail & Related papers (2020-07-04T07:20:31Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.