Federated Learning Over Cellular-Connected UAV Networks with Non-IID
Datasets
- URL: http://arxiv.org/abs/2110.07077v1
- Date: Wed, 13 Oct 2021 23:15:20 GMT
- Title: Federated Learning Over Cellular-Connected UAV Networks with Non-IID
Datasets
- Authors: Di-Chun Liang, Chun-Hung Liu, Rung-Hung Gau, Lu Wei
- Abstract summary: Federated learning (FL) is a promising distributed learning technique.
This paper proposes a new FL model over a cellular-connected unmanned aerial vehicle (UAV) network.
We propose a tractable analytical framework of the uplink outage probability in the cellular-connected UAV network.
- Score: 19.792426676330212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising distributed learning technique
particularly suitable for wireless learning scenarios since it can accomplish a
learning task without raw data transportation so as to preserve data privacy
and lower network resource consumption. However, current works on FL over
wireless communication do not profoundly study the fundamental performance of
FL that suffers from data delivery outage due to network interference and data
heterogeneity among mobile clients. To accurately exploit the performance of FL
over wireless communication, this paper proposes a new FL model over a
cellular-connected unmanned aerial vehicle (UAV) network, which characterizes
data delivery outage from UAV clients to their server and data heterogeneity
among the datasets of UAV clients. We devise a simulation-based approach to
evaluating the convergence performance of the proposed FL model. We then
propose a tractable analytical framework of the uplink outage probability in
the cellular-connected UAV network and derive a neat expression of the uplink
outage probability, which reveals how the proposed FL model is impacted by data
delivery outage and UAV deployment. Extensive numerical simulations are
conducted to show the consistency between the estimated and simulated
performances.
Related papers
- Towards Reliable Participation in UAV-Enabled Federated Edge Learning on
Non-IID Data [22.775113283662883]
Federated Learning (FL) is a decentralized machine learning (ML) technique that allows a number of participants to train an ML model collaboratively.
FL can be targeted by poisoning attacks, in which malicious UAVs upload poisonous local models to the FL server.
We propose in this paper a novel client selection scheme that enhances convergence by prioritizing fast UAVs with high-reliability scores.
arXiv Detail & Related papers (2023-12-16T10:35:06Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
Federated Learning (FL) has emerged as a promising approach for privacy preservation.
This article investigates the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks.
We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss.
arXiv Detail & Related papers (2023-03-29T16:36:42Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - CFLIT: Coexisting Federated Learning and Information Transfer [18.30671838758503]
We study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network.
We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system.
arXiv Detail & Related papers (2022-07-26T13:17:28Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
We study the impact of estimation errors on the convergence of Federated Learning (FL) over resource-constrained wireless networks.
We propose retransmissions as a method to improve FL convergence over resource-constrained wireless networks.
arXiv Detail & Related papers (2021-11-19T15:17:15Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.