A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction
- URL: http://arxiv.org/abs/2405.14545v1
- Date: Thu, 23 May 2024 13:25:20 GMT
- Title: A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction
- Authors: Hongzhi Zhang, Xiuwen Gong, Shirui Pan, Jia Wu, Bo Du, Wenbin Hu,
- Abstract summary: Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
- Score: 85.2792480737546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug-target interaction (DTI) prediction is a critical component of the drug discovery process. In the drug development engineering field, predicting novel drug-target interactions is extremely crucial.However, although existing methods have achieved high accuracy levels in predicting known drugs and drug targets, they fail to utilize global protein information during DTI prediction. This leads to an inability to effectively predict interaction the interactions between novel drugs and their targets. As a result, the cross-field information fusion strategy is employed to acquire local and global protein information. Thus, we propose the siamese drug-target interaction SiamDTI prediction method, which utilizes a double channel network structure for cross-field supervised learning.Experimental results on three benchmark datasets demonstrate that SiamDTI achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.Additionally, SiamDTI's performance with known drugs and targets is comparable to that of SOTA approachs. The code is available at https://anonymous.4open.science/r/DDDTI-434D.
Related papers
- FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction [23.521628951362647]
This paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to learn fine-grained information for Drug-Target Interaction.
In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation.
Our experiments show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-03T14:48:54Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Meta-Path-based Probabilistic Soft Logic for Drug-Target Interaction
Prediction [36.08294497336554]
Drug-target interaction (DTI) prediction aims at predicting whether a drug will be bounded to a target.
Most of the recently proposed methods use single drug-drug similarity and target-target similarity information for DTI prediction.
We propose a network-based drug-target interaction prediction approach.
arXiv Detail & Related papers (2023-06-25T02:30:38Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
Drug-target interactions are predicted via structure-based drug similarities and sequence-based target protein similarities.
Most existing similarity-based methods follow the transductive setting.
A large amount of missing interactions in current DTI datasets hinders most DTI prediction methods.
We propose a new method denoted as Weighted k Nearest Neighbor with Interaction Recovery (WkNNIR)
arXiv Detail & Related papers (2020-12-22T19:54:18Z) - DTI-SNNFRA: Drug-Target interaction prediction by shared nearest
neighbors and fuzzy-rough approximation [0.0]
We have proposed DTI-SNNFRA, a framework for predicting drug-target interaction (DTI) based on shared nearest neighbour (SNN) and fuzzy-rough approximation (FRA)
The model performs exceptionally well with a high prediction score of 0.95 for ROC-AUC.
arXiv Detail & Related papers (2020-09-22T19:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.