Cryogenic integrated spontaneous parametric down-conversion
- URL: http://arxiv.org/abs/2110.07425v1
- Date: Thu, 14 Oct 2021 14:53:36 GMT
- Title: Cryogenic integrated spontaneous parametric down-conversion
- Authors: Nina Amelie Lange, Jan Philipp H\"opker, Raimund Ricken, Viktor
Quiring, Christof Eigner, Christine Silberhorn, Tim J. Bartley
- Abstract summary: We show that SPDC in nonlinear waveguides is fully compatible with cryogenic operating conditions required for superconducting detectors.
This is necessary for the proliferation of integrated quantum photonics in integration platforms exploiting quasi-phase-matched second-order nonlinear interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalable quantum photonics relies on interfacing many optical components
under mutually compatible operating conditions. To that end, we demonstrate
that spontaneous parametric down-conversion (SPDC) in nonlinear waveguides, a
standard technology for generating entangled photon pairs, squeezed states, and
heralded single photons, is fully compatible with cryogenic operating
conditions required for superconducting detectors. This is necessary for the
proliferation of integrated quantum photonics in integration platforms
exploiting quasi-phase-matched second-order nonlinear interactions. We
investigate how cryogenic operation at 4 K affects the SPDC process by
comparing the heralding efficiency, second-order correlation function and
spectral properties with operation at room temperature.
Related papers
- Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Generation of spectrally factorable photon pairs via multi-order
quasi-phase-matched spontaneous parametric downconversion [0.0]
We experimentally demonstrate a technique to produce spectrally factorable photon pairs utilizing multi-order quasi-phase-matching conditions.
We show that telecom-band photon pairs produced by our custom-poled crystal are highly factorable with > 95% single-photon purity.
arXiv Detail & Related papers (2021-11-22T04:17:24Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Cryogenic second harmonic generation in periodically-poled lithium
niobate waveguides [0.0]
We show the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K.
Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
arXiv Detail & Related papers (2020-05-15T12:36:25Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.