論文の概要: The Irrationality of Neural Rationale Models
- arxiv url: http://arxiv.org/abs/2110.07550v1
- Date: Thu, 14 Oct 2021 17:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 17:00:23.830472
- Title: The Irrationality of Neural Rationale Models
- Title(参考訳): 神経合理モデルの不合理性
- Authors: Yiming Zheng, Serena Booth, Julie Shah, Yilun Zhou
- Abstract要約: 反対に、哲学的視点と経験的証拠の両方で、有理モデルが、おそらく予想よりも合理的で解釈可能でないことを示唆している。
我々はこれらのモデルのより厳密で包括的な評価を求め、解釈可能性の望ましい特性が実際に達成されることを確実にする。
- 参考スコア(独自算出の注目度): 6.159428088113691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural rationale models are popular for interpretable predictions of NLP
tasks. In these, a selector extracts segments of the input text, called
rationales, and passes these segments to a classifier for prediction. Since the
rationale is the only information accessible to the classifier, it is plausibly
defined as the explanation. Is such a characterization unconditionally correct?
In this paper, we argue to the contrary, with both philosophical perspectives
and empirical evidence suggesting that rationale models are, perhaps, less
rational and interpretable than expected. We call for more rigorous and
comprehensive evaluations of these models to ensure desired properties of
interpretability are indeed achieved. The code can be found at
https://github.com/yimingz89/Neural-Rationale-Analysis.
- Abstract(参考訳): ニューラル合理モデルはnlpタスクの解釈可能な予測によく用いられる。
セレクタは、有理数と呼ばれる入力テキストのセグメントを抽出し、これらのセグメントを予測のための分類器に渡す。
理性は分類器にアクセスできる唯一の情報であるため、説明として妥当に定義される。
そのような特徴は無条件で正しいか?
本稿では、哲学的視点と経験的証拠の両方で、有理モデルが、おそらく予想されるよりも合理的で解釈可能でないことを示唆して、反対に論じる。
我々はこれらのモデルのより厳密で包括的な評価を求め、解釈可能性の望ましい特性が実際に達成されることを保証する。
コードはhttps://github.com/yimingz89/Neural-Rationale-Analysisで見ることができる。
関連論文リスト
- AURA: Natural Language Reasoning for Aleatoric Uncertainty in Rationales [0.0]
答の背後にある合理性は、モデル決定を説明するだけでなく、複雑な推論タスクをうまく推理するために言語モデルを促進する。
モデルパフォーマンスを促進するのに十分な根拠が忠実である程度を見積もるのは簡単ではない。
本稿では,不完全理理性に対処する方法を提案する。
論文 参考訳(メタデータ) (2024-02-22T07:12:34Z) - Plausible Extractive Rationalization through Semi-Supervised Entailment
Signal [33.35604728012685]
抽出された有理量の妥当性を最適化するために,半教師付きアプローチを採用する。
我々は、事前学習された自然言語推論(NLI)モデルを採用し、さらに教師付き論理の小さなセットに微調整する。
質問応答タスクにおける説明と回答のアライメント合意を強制することにより、真理ラベルにアクセスせずに性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-02-13T14:12:32Z) - You Only Forward Once: Prediction and Rationalization in A Single
Forward Pass [10.998983921416533]
教師なしの合理性抽出は、合理性のないモデル予測をサポートするために、簡潔で連続的なテキストスニペットを抽出することを目的としている。
これまでの研究では、RNP(Rationalizing Neural Prediction)フレームワークと呼ばれる2段階のフレームワークを使用してきた。
そこで我々は,論理学の緩和版から派生した,単相一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一元一
論文 参考訳(メタデータ) (2023-11-04T08:04:28Z) - Rationalizing Predictions by Adversarial Information Calibration [65.19407304154177]
我々は2つのモデルを共同で訓練する: 1つは、正確だがブラックボックスな方法でタスクを解く典型的なニューラルモデルであり、もう1つは、予測の理論的根拠を付加するセレクタ・予測モデルである。
我々は,2つのモデルから抽出した情報を,それらの違いが欠落した特徴や過度に選択された特徴の指標であるように校正するために,敵対的手法を用いる。
論文 参考訳(メタデータ) (2023-01-15T03:13:09Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
依存関係解析のための解釈可能な推論プロセスを持つニューラルモデルを開発する。
私たちのモデルはインスタンスベースの推論を採用しており、トレーニングセットのエッジと比較することで、依存関係のエッジを抽出し、ラベル付けします。
論文 参考訳(メタデータ) (2021-09-28T05:30:52Z) - Rationales for Sequential Predictions [117.93025782838123]
シーケンスモデルは現代のNLPシステムにおいて重要な要素であるが、それらの予測は説明が難しい。
モデル説明は有理だが、個々のモデル予測を説明できる文脈のサブセットを考える。
この目的を近似する効率的なグリードアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-14T01:25:15Z) - Measuring Association Between Labels and Free-Text Rationales [60.58672852655487]
解釈可能なNLPでは、説明された例に対するモデルの意思決定プロセスを反映した忠実な理性が必要です。
情報抽出型タスクに対する忠実な抽出合理化のための既存のモデルであるパイプラインは、自由テキスト合理化を必要とするタスクに確実に拡張されないことを示す。
我々は、信頼が確立されていない自由文合理化のための、広く使われている高性能モデルのクラスである、共同予測と合理化のモデルに目を向ける。
論文 参考訳(メタデータ) (2020-10-24T03:40:56Z) - Learning to Faithfully Rationalize by Construction [36.572594249534866]
多くの設定において、モデルが特別な予測をした理由を理解することが重要である。
提案手法は, 構築による忠実な説明を提供する, このアプローチの簡易な変種を提案する。
自動評価と手動評価の両方において、この単純なフレームワークの変種はエンドツーエンドのアプローチよりも優れていることが分かる。
論文 参考訳(メタデータ) (2020-04-30T21:45:40Z) - Invariant Rationalization [84.1861516092232]
典型的な合理化基準、すなわち最大相互情報(MMI)は、合理性のみに基づいて予測性能を最大化する合理性を見つける。
ゲーム理論の不変な有理化基準を導入し、各環境において同じ予測器を最適にするために、有理を制約する。
理論的にも実証的にも、提案された理性は、素早い相関を除外し、異なるテストシナリオをより一般化し、人間の判断とよく一致させることができることを示す。
論文 参考訳(メタデータ) (2020-03-22T00:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。