Scalable and robust quantum computing on qubit arrays with fixed
coupling
- URL: http://arxiv.org/abs/2110.07737v2
- Date: Mon, 27 Jun 2022 20:28:43 GMT
- Title: Scalable and robust quantum computing on qubit arrays with fixed
coupling
- Authors: Nguyen H. Le, Max Cykiert, Eran Ginossar
- Abstract summary: We propose a scheme for scalable and robust quantum computing on two-dimensional arrays of qubits with fixed longitudinal coupling.
This opens the possibility for bypassing the device complexity associated with tunable couplers required in conventional quantum computing hardware.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a scheme for scalable and robust quantum computing on
two-dimensional arrays of qubits with fixed longitudinal coupling. This opens
the possibility for bypassing the device complexity associated with tunable
couplers required in conventional quantum computing hardware. Our approach is
based on driving a subarray of qubits such that the total multi-qubit
Hamiltonian can be decomposed into a sum of commuting few-qubit blocks, and
then efficient optimization of the unitary evolution within each block. Each
driving pulse can implement a target gate on the driven qubits, and at the same
time implement identity gates on the neighbouring undriven qubits, cancelling
any unwanted evolution due to the constant qubit-qubit interaction. We show
that it is possible to realise a universal set of quantum gates with high
fidelity on the basis blocks, and by shifting the driving pattern one can
realise an arbitrary quantum circuit on the array. Allowing for imperfect
Hamiltonian characterisation, we use robust optimal control to obtain
fidelities around 99.99% despite 1% uncertainty in the qubit-qubit and
drive-qubit couplings, and a detuning uncertainty at 0.1% of the qubit-qubit
coupling strength. This robust feature is crucial for scaling up as parameter
uncertainty is significant in large devices.
Related papers
- Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - A shuttling-based two-qubit logic gate for linking distant silicon
quantum processors [0.0]
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation.
Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors.
arXiv Detail & Related papers (2022-02-03T01:04:48Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Special-Purpose Quantum Processor Design [2.275405513780208]
Full connectivity of qubits is necessary for most quantum algorithms.
inserting swap gate to enable the two-qubit gates between uncoupled qubits significantly decreases the computation result fidelity.
We propose a Special-Purpose Quantum Processor Design method that can design suitable structures for different quantum algorithms.
arXiv Detail & Related papers (2021-02-01T23:26:15Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.