Scalable Causal Structure Learning: New Opportunities in Biomedicine
- URL: http://arxiv.org/abs/2110.07785v1
- Date: Fri, 15 Oct 2021 00:45:25 GMT
- Title: Scalable Causal Structure Learning: New Opportunities in Biomedicine
- Authors: Pulakesh Upadhyaya, Kai Zhang, Can Li, Xiaoqian Jiang, Yejin Kim
- Abstract summary: We review prominent traditional, score-based and machine-learning based schemes for causal structure discovery, study some of their performance over some benchmark datasets, and discuss some of the applications to biomedicine.
In the case of sufficient data, machine learning-based approaches can be scalable, can include a greater number of variables than traditional approaches, and can potentially be applied in many biomedical applications.
- Score: 13.644407210028927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper gives a practical tutorial on popular causal structure learning
models with examples of real-world data to help healthcare audiences understand
and apply them. We review prominent traditional, score-based and
machine-learning based schemes for causal structure discovery, study some of
their performance over some benchmark datasets, and discuss some of the
applications to biomedicine. In the case of sufficient data, machine
learning-based approaches can be scalable, can include a greater number of
variables than traditional approaches, and can potentially be applied in many
biomedical applications.
Related papers
- Perspectives: Comparison of Deep Learning Segmentation Models on Biophysical and Biomedical Data [0.0]
We compare convolutional neural networks, U-Nets, vision transformers, and vision state space models.
In doing so, we establish criteria for determining optimal conditions under which each model excels.
arXiv Detail & Related papers (2024-08-14T19:49:19Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Introduction to Machine Learning for Physicians: A Survival Guide for
Data Deluge [9.152759278163954]
Modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets.
There is growing interest in machine learning and artificial intelligence applications that can harness this data deluge'
This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications.
arXiv Detail & Related papers (2022-12-23T13:08:59Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Network Module Detection from Multi-Modal Node Features with a Greedy
Decision Forest for Actionable Explainable AI [0.0]
In this work, we demonstrate subnetwork detection based on multi-modal node features using a new Greedy Decision Forest.
Our glass-box approach could help to uncover disease-causing network modules from multi-omics data to better understand diseases such as cancer.
arXiv Detail & Related papers (2021-08-26T09:42:44Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
The number of manuscripts related to machine learning or artificial intelligence has exponentially increased over the past years.
In the first section, we provide explanations on the general principles of machine learning.
In further sections, we review the importance of resampling, overfitting and model generalizability and strategies for model evaluation.
arXiv Detail & Related papers (2020-06-23T20:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.