論文の概要: When Combating Hype, Proceed with Caution
- arxiv url: http://arxiv.org/abs/2110.08300v1
- Date: Fri, 15 Oct 2021 18:19:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 13:22:29.057162
- Title: When Combating Hype, Proceed with Caution
- Title(参考訳): 誇大宣伝と戦うとき、注意して進む
- Authors: Samuel R. Bowman
- Abstract要約: 良い意味ではありますが、これらのプラクティスは、最高のテクノロジの限界について誤解を招くか、あるいは虚偽の主張を引き起こすことが少なくありません。
本稿では,これらの主張に注意を喚起し,回避や反論を容易にする研究の方向性とコミュニケーション戦略を提案する。
- 参考スコア(独自算出の注目度): 28.040183060306603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an effort to avoid reinforcing widespread hype about the capabilities of
state-of-the-art language technology, researchers have developed practices in
framing and citation that serve to deemphasize the field's successes. Though
well-meaning, these practices often yield misleading or even false claims about
the limits of our best technology. This is a problem, and it may be more
serious than it looks: It limits our ability to mitigate short-term harms from
NLP deployments and it limits our ability to prepare for the potentially
enormous impacts of more distant future advances. This paper urges researchers
to be careful about these claims and suggests some research directions and
communication strategies that will make it easier to avoid or rebut them.
- Abstract(参考訳): 最先端の言語技術の能力に関する広汎な誇大宣伝の強化を避けるために、研究者は、フィールドの成功を強調するのに役立つフレーミングと引用のプラクティスを開発した。
良い意味ではありますが、これらのプラクティスは、最高のテクノロジの限界について誤解を招くか、あるいは虚偽の主張を引き起こします。
NLPデプロイメントによる短期的損害を軽減する能力や、より遠い将来の進歩による潜在的に巨大な影響に備える能力に制限があります。
本稿では,これらの主張に注意を払い,回避や反論を容易にするための研究の方向性やコミュニケーション戦略を提案する。
関連論文リスト
- Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Amplifying Limitations, Harms and Risks of Large Language Models [1.0152838128195467]
この記事は、人工知能に関する誇大広告の急増に対抗すべく、小さなジェスチャーとして紹介する。
また、この分野の外部の人たちが、AI技術の限界についてより深く知るのに役立つかもしれない。
論文 参考訳(メタデータ) (2023-07-06T11:53:45Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - When not to use machine learning: a perspective on potential and
limitations [0.0]
データ駆動モデリングの指針原則と、これらの原則が、ほぼ魔法のような予測力を持つモデルをどのように組み合わせているかを強調します。
フォローすべき議論は、研究者にそのテクニックが適切かどうかをよりよく理解してもらうことを願っている。
論文 参考訳(メタデータ) (2022-10-06T04:00:00Z) - Adversarial Patch Attacks and Defences in Vision-Based Tasks: A Survey [1.0323063834827415]
近年、AIモデルのセキュリティと堅牢性に対する信頼の欠如により、ディープラーニングモデル、特に安全クリティカルなシステムに対する敵対的攻撃がますます注目を集めている。
しかし、より原始的な敵攻撃は物理的に実現不可能な場合や、パッチ攻撃の発端となったトレーニングデータのようなアクセスが難しいリソースを必要とする場合もあります。
本調査では,既存の敵パッチ攻撃のテクニックを包括的に概説し,研究者がこの分野の進展に素早く追いつくのに役立つことを目的としている。
論文 参考訳(メタデータ) (2022-06-16T17:06:47Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
ディープラーニングは、予測を操作できる敵攻撃に対して脆弱である。
本稿では,ディープラーニングに対する敵対的攻撃におけるコンピュータビジョンコミュニティの貢献を概観する。
この領域では、非専門家に技術的な用語の定義を提供する。
論文 参考訳(メタデータ) (2021-08-01T08:54:47Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Nose to Glass: Looking In to Get Beyond [0.0]
責任ある人工知能を強化するというバナーの下で研究が増えている。
研究の目的は、アルゴリズムシステムの展開によって引き起こされる害に対処し、緩和し、最終的には軽減することである。
しかし、そのようなツールの実装は依然として少ない。
論文 参考訳(メタデータ) (2020-11-26T06:51:45Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - The Offense-Defense Balance of Scientific Knowledge: Does Publishing AI
Research Reduce Misuse? [0.0]
人工知能(AI)研究の誤用に関する懸念が高まっている。
科学研究の出版は技術の誤用を助長するが、この研究は誤用に対する保護にも貢献する。
本稿ではこれらの2つの効果のバランスについて述べる。
論文 参考訳(メタデータ) (2019-12-27T10:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。