論文の概要: Nose to Glass: Looking In to Get Beyond
- arxiv url: http://arxiv.org/abs/2011.13153v2
- Date: Tue, 1 Dec 2020 13:24:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-22 22:52:35.497691
- Title: Nose to Glass: Looking In to Get Beyond
- Title(参考訳): ノーズ・トゥ・グラス(Nose to Glass)
- Authors: Josephine Seah
- Abstract要約: 責任ある人工知能を強化するというバナーの下で研究が増えている。
研究の目的は、アルゴリズムシステムの展開によって引き起こされる害に対処し、緩和し、最終的には軽減することである。
しかし、そのようなツールの実装は依然として少ない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brought into the public discourse through investigative work by journalists
and scholars, awareness of algorithmic harms is at an all-time high. An
increasing amount of research has been conducted under the banner of enhancing
responsible artificial intelligence (AI), with the goal of addressing,
alleviating, and eventually mitigating the harms brought on by the roll out of
algorithmic systems. Nonetheless, implementation of such tools remains low.
Given this gap, this paper offers a modest proposal: that the field,
particularly researchers concerned with responsible research and innovation,
may stand to gain from supporting and prioritising more ethnographic work. This
embedded work can flesh out implementation frictions and reveal organisational
and institutional norms that existing work on responsible artificial
intelligence AI has not yet been able to offer. In turn, this can contribute to
more insights about the anticipation of risks and mitigation of harm. This
paper reviews similar empirical work typically found elsewhere, commonly in
science and technology studies and safety science research, and lays out
challenges of this form of inquiry.
- Abstract(参考訳): ジャーナリストや学者による調査研究を通じて、大衆の言論に目を向けると、アルゴリズム的害に対する認識は最高である。
責任ある人工知能(AI)の強化というバナーの下で、アルゴリズムシステムのロールアウトによって引き起こされる害に対処し、緩和し、最終的に軽減することを目的として、研究が増えている。
それでも、そのようなツールの実装は低いままである。
このギャップを考えると、この分野、特に責任ある研究と革新に関心のある研究者は、より民族学的な仕事の支援と優先順位付けから得ることができるという、控えめな提案が提示される。
この組み込み作業は、実装上の摩擦を解消し、人工知能の責任を負うAIに関する既存の作業が提供できないという組織的および制度的な規範を明らかにする。
結果として、これはリスクの予測と害の緩和に関するさらなる洞察に寄与する可能性がある。
本稿では、科学・技術研究や安全科学研究で一般的に見られる同様の実証研究を概説し、この種の調査の課題を概説する。
関連論文リスト
- The Narrow Depth and Breadth of Corporate Responsible AI Research [3.364518262921329]
私たちは、AI企業の大多数が、この重要なAIのサブフィールドにおいて、限られた、あるいは全く関与していないことを示している。
主要なAI企業は、従来のAI研究に比べて、責任あるAI研究のアウトプットが著しく低い。
当社の結果は、業界が責任あるAI研究を公然と行う必要性を浮き彫りにしたものだ。
論文 参考訳(メタデータ) (2024-05-20T17:26:43Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
本稿では、説得力があり社会的に関係のある研究課題を定式化するためのガイドを提供するための研究プレイブックを提案する。
私たちは、AIとAR/VRの2つの破壊的なテクノロジの影響を疑問視するために使用することができることを示しています。
論文 参考訳(メタデータ) (2024-02-20T19:13:36Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
本稿では,地球科学とリモートセンシング分野におけるAIセキュリティの現況を概観する。
敵攻撃、バックドア攻撃、連合学習、不確実性、説明可能性の5つの重要な側面をカバーしている。
著者の知識を最大限に活用するために,本稿は,地球科学とRSコミュニティにおけるAIセキュリティ関連研究の体系的レビューを行う最初の試みである。
論文 参考訳(メタデータ) (2022-12-19T10:54:51Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z) - The Offense-Defense Balance of Scientific Knowledge: Does Publishing AI
Research Reduce Misuse? [0.0]
人工知能(AI)研究の誤用に関する懸念が高まっている。
科学研究の出版は技術の誤用を助長するが、この研究は誤用に対する保護にも貢献する。
本稿ではこれらの2つの効果のバランスについて述べる。
論文 参考訳(メタデータ) (2019-12-27T10:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。