Federated Impression for Learning with Distributed Heterogeneous Data
- URL: http://arxiv.org/abs/2409.07351v2
- Date: Wed, 9 Oct 2024 13:55:01 GMT
- Title: Federated Impression for Learning with Distributed Heterogeneous Data
- Authors: Atrin Arya, Sana Ayromlou, Armin Saadat, Purang Abolmaesumi, Xiaoxiao Li,
- Abstract summary: Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data.
In FL, sub-optimal convergence is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers.
We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression.
- Score: 19.50235109938016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard deep learning-based classification approaches may not always be practical in real-world clinical applications, as they require a centralized collection of all samples. Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data, which can help mitigate privacy and data ownership issues. In FL, sub-optimal convergence caused by data heterogeneity is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers. Through experimentation in this study, we show that data heterogeneity leads to the phenomenon of catastrophic forgetting during local training. We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression. To achieve this, we distill the global model resulting from each communication round. Subsequently, we use the synthetic data alongside the local data to enhance the generalization of local training. Extensive experiments show that the proposed method achieves state-of-the-art performance on both the BloodMNIST and Retina datasets, which contain label imbalance and domain shift, with an improvement in classification accuracy of up to 20%.
Related papers
- FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
We introduce FedMRL, a novel multi-agent deep reinforcement learning framework designed to address data heterogeneity.
FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model.
We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-07-08T10:10:07Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Federated Virtual Learning on Heterogeneous Data with Local-global
Distillation [17.998623216905496]
Federated Virtual Learning on Heterogeneous Data with Local-Global Distillation (FedLGD)
We propose a new method, called Federated Virtual Learning on Heterogeneous Data with Local-Global Distillation (FedLGD)
Our method outperforms state-of-the-art heterogeneous FL algorithms under various settings with a very limited amount of distilled virtual data.
arXiv Detail & Related papers (2023-03-04T00:35:29Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model.
In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models.
Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy.
arXiv Detail & Related papers (2022-07-07T17:25:04Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification [6.0088002781256185]
We propose Federated Learning with Shared Label Distribution (FedSLD) for classification tasks.
FedSLD adjusts the contribution of each data sample to the local objective during optimization given knowledge of the distribution.
Our results show that FedSLD achieves better convergence performance than the compared leading FL optimization algorithms.
arXiv Detail & Related papers (2021-10-15T21:38:25Z) - An Experimental Study of Data Heterogeneity in Federated Learning
Methods for Medical Imaging [8.984706828657814]
Federated learning enables multiple institutions to collaboratively train machine learning models on their local data in a privacy-preserving way.
We investigate the deleterious impact of a taxonomy of data heterogeneity regimes on federated learning methods, including quantity skew, label distribution skew, and imaging acquisition skew.
We present several mitigation strategies to overcome performance drops from data heterogeneity, including weighted average for data quantity skew, weighted loss and batch normalization averaging for label distribution skew.
arXiv Detail & Related papers (2021-07-18T05:47:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.