Elastic Shape Analysis of Tree-like 3D Objects using Extended SRVF
Representation
- URL: http://arxiv.org/abs/2110.08693v4
- Date: Sun, 26 Nov 2023 19:24:52 GMT
- Title: Elastic Shape Analysis of Tree-like 3D Objects using Extended SRVF
Representation
- Authors: Guan Wang, Hamid Laga, Anuj Srivastava
- Abstract summary: We develop a framework for representing, comparing, and computing geodesic deformations between the shapes of such tree-like 3D objects.
A hierarchical organization of subtrees characterizes these objects.
We then define a new metric that quantifies the bending, stretching, and branch sliding needed to deform one tree-shaped object into the other.
- Score: 18.728209940066055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can one analyze detailed 3D biological objects, such as neurons and
botanical trees, that exhibit complex geometrical and topological variation? In
this paper, we develop a novel mathematical framework for representing,
comparing, and computing geodesic deformations between the shapes of such
tree-like 3D objects. A hierarchical organization of subtrees characterizes
these objects -- each subtree has the main branch with some side branches
attached -- and one needs to match these structures across objects for
meaningful comparisons. We propose a novel representation that extends the
Square-Root Velocity Function (SRVF), initially developed for Euclidean curves,
to tree-shaped 3D objects. We then define a new metric that quantifies the
bending, stretching, and branch sliding needed to deform one tree-shaped object
into the other. Compared to the current metrics, such as the Quotient Euclidean
Distance (QED) and the Tree Edit Distance (TED), the proposed representation
and metric capture the full elasticity of the branches (i.e., bending and
stretching) as well as the topological variations (i.e., branch death/birth and
sliding). It completely avoids the shrinkage that results from the edge
collapse and node split operations of the QED and TED metrics. We demonstrate
the utility of this framework in comparing, matching, and computing geodesics
between biological objects such as neurons and botanical trees. The framework
is also applied to various shape analysis tasks: (i) symmetry analysis and
symmetrization of tree-shaped 3D objects, (ii) computing summary statistics
(means and modes of variations) of populations of tree-shaped 3D objects, (iii)
fitting parametric probability distributions to such populations, and (iv)
finally synthesizing novel tree-shaped 3D objects through random sampling from
estimated probability distributions.
Related papers
- Level-Set Parameters: Novel Representation for 3D Shape Analysis [70.23417107911567]
Recent development of neural fields brings in level-set parameters from signed distance functions as a novel, continuous, and numerical representation of 3D shapes.
We establish correlations across different shapes by formulating them as a pseudo-normal distribution, and learn the distribution prior to the respective dataset.
We demonstrate the promise of the novel representations through applications in shape classification, retrieval, and 6D object pose estimation.
arXiv Detail & Related papers (2024-12-18T04:50:19Z) - A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures [38.04447518666407]
We present the first comprehensive approach for modeling and analyzingtemporal shape variability in tree-like 4D objects.
Our key contribution is the representation of tree-like 3D shapes using Square Root Velocity Trees (SFT)
This reduces the problem of modeling and analyzing 4D tree-like shapes to that of modeling and analyzing elastic trajectories in the SRVFT space.
arXiv Detail & Related papers (2024-08-22T14:39:30Z) - Interior Object Geometry via Fitted Frames [18.564031163436553]
We describe a representation targeted for anatomic objects which is designed to enable strong locational correspondence within object populations.
The method generates fitted frames on the boundary and in the interior of objects and produces alignment-free geometric features from them.
arXiv Detail & Related papers (2024-07-19T14:38:47Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Continuous Surface Embeddings [76.86259029442624]
We focus on the task of learning and representing dense correspondences in deformable object categories.
We propose a new, learnable image-based representation of dense correspondences.
We demonstrate that the proposed approach performs on par or better than the state-of-the-art methods for dense pose estimation for humans.
arXiv Detail & Related papers (2020-11-24T22:52:15Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - UCSG-Net -- Unsupervised Discovering of Constructive Solid Geometry Tree [6.605824452872053]
Existing approaches to 3D shape reconstruction are supervised and require the entire CSG primitive tree that is given upfront during the process.
We show that our model predicts parameters of an operation and parses their representation through differentiable indicator function.
We show that our model is interpretable and can be used in software.
arXiv Detail & Related papers (2020-06-16T12:13:37Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z) - PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree
Conditions [66.87405921626004]
This paper investigates the novel problem of generating 3D shape point cloud geometry from a symbolic part tree representation.
We propose a conditional GAN "part tree"-to-"point cloud" model (PT2PC) that disentangles the structural and geometric factors.
arXiv Detail & Related papers (2020-03-19T08:27:25Z) - Spectral neighbor joining for reconstruction of latent tree models [5.229354894035374]
We develop Spectral Neighbor Joining, a novel method to recover the structure of latent tree graphical models.
We prove that SNJ is consistent, and derive a sufficient condition for correct tree recovery from an estimated similarity matrix.
We illustrate via extensive simulations that in comparison to several other reconstruction methods, SNJ requires fewer samples to accurately recover trees with a large number of leaves or long edges.
arXiv Detail & Related papers (2020-02-28T05:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.