Uncertainty-Aware Semi-Supervised Few Shot Segmentation
- URL: http://arxiv.org/abs/2110.08954v1
- Date: Mon, 18 Oct 2021 00:37:46 GMT
- Title: Uncertainty-Aware Semi-Supervised Few Shot Segmentation
- Authors: Soopil Kim, Philip Chikontwe, Sang Hyun Park
- Abstract summary: Few shot segmentation (FSS) aims to learn pixel-level classification of a target object in a query image using only a few annotated support samples.
This is challenging as it requires modeling appearance variations of target objects and the diverse visual cues between query and support images with limited information.
We propose a semi-supervised FSS strategy that leverages additional prototypes from unlabeled images with uncertainty guided pseudo label refinement.
- Score: 9.098329723771116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few shot segmentation (FSS) aims to learn pixel-level classification of a
target object in a query image using only a few annotated support samples. This
is challenging as it requires modeling appearance variations of target objects
and the diverse visual cues between query and support images with limited
information. To address this problem, we propose a semi-supervised FSS strategy
that leverages additional prototypes from unlabeled images with uncertainty
guided pseudo label refinement. To obtain reliable prototypes from unlabeled
images, we meta-train a neural network to jointly predict segmentation and
estimate the uncertainty of predictions. We employ the uncertainty estimates to
exclude predictions with high degrees of uncertainty for pseudo label
construction to obtain additional prototypes based on the refined pseudo
labels. During inference, query segmentation is predicted using prototypes from
both support and unlabeled images including low-level features of the query
images. Our approach is end-to-end and can easily supplement existing
approaches without the requirement of additional training to employ unlabeled
samples. Extensive experiments on PASCAL-$5^i$ and COCO-$20^i$ demonstrate that
our model can effectively remove unreliable predictions to refine pseudo labels
and significantly improve upon state-of-the-art performances.
Related papers
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
Semi-supervised semantic segmentation involves assigning pixel-wise labels to unlabeled images at training time.
Current approaches to semi-supervised semantic segmentation work by predicting pseudo-labels for each pixel from a class-wise probability distribution output by a model.
In this work, we move one step forward by adapting NPs to semi-supervised semantic segmentation, resulting in a new model called NP-SemiSeg.
arXiv Detail & Related papers (2023-08-05T12:42:15Z) - Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment [25.198550162904713]
Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images.
Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting.
In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models.
arXiv Detail & Related papers (2023-06-19T14:13:56Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
We propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors.
Joint-Confidence Estimation (JCE) is proposed to quantifies the classification and localization quality of pseudo labels.
ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC.
arXiv Detail & Related papers (2023-03-27T07:46:58Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Semi-supervised Semantic Segmentation with Prototype-based Consistency
Regularization [20.4183741427867]
Semi-supervised semantic segmentation requires the model to propagate the label information from limited annotated images to unlabeled ones.
A challenge for such a per-pixel prediction task is the large intra-class variation.
We propose a novel approach to regularize the distribution of within-class features to ease label propagation difficulty.
arXiv Detail & Related papers (2022-10-10T01:38:01Z) - Semi-supervised Salient Object Detection with Effective Confidence
Estimation [35.0990691497574]
We study semi-supervised salient object detection with access to a small number of labeled samples and a large number of unlabeled samples.
We model the nature of human saliency labels using the latent variable of the Conditional Energy-based Model.
With only 1/16 labeled samples, our model achieves competitive performance compared with state-of-the-art fully-supervised models.
arXiv Detail & Related papers (2021-12-28T07:14:48Z) - Self-Paced Uncertainty Estimation for One-shot Person Re-Identification [9.17071384578203]
We propose a novel Self-Paced Uncertainty Estimation Network (SPUE-Net) for one-shot Person Re-ID.
By introducing a self-paced sampling strategy, our method can estimate the pseudo-labels of unlabeled samples iteratively to expand the labeled samples.
In addition, we apply a Co-operative learning method of local uncertainty estimation combined with determinacy estimation to achieve better hidden space feature mining.
arXiv Detail & Related papers (2021-04-19T09:20:30Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Utilizing Uncertainty Estimation in Deep Learning Segmentation of
Fluorescence Microscopy Images with Missing Markers [7.812710681134931]
Fluorescence microscopy images contain several channels, each indicating a marker staining the sample.
It has been challenging to apply deep learning based segmentation models, which expect a predefined channel combination for all training samples as well as at inference for future application.
We propose a method to estimate segmentation quality on unlabeled images by (i) estimating both aleatoric and epistemic uncertainties of convolutional neural networks for image segmentation, and (ii) training a Random Forest model for the interpretation of uncertainty features via regression to their corresponding segmentation metrics.
arXiv Detail & Related papers (2021-01-27T15:06:04Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.