Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment
- URL: http://arxiv.org/abs/2306.10955v1
- Date: Mon, 19 Jun 2023 14:13:56 GMT
- Title: Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment
- Authors: Shivam Pande, Nassim Ait Ali Braham, Yi Wang, Conrad M Albrecht,
Biplab Banerjee, Xiao Xiang Zhu
- Abstract summary: Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images.
Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting.
In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models.
- Score: 25.198550162904713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) classification is gaining a lot of momentum in
present time because of high inherent spectral information within the images.
However, these images suffer from the problem of curse of dimensionality and
usually require a large number samples for tasks such as classification,
especially in supervised setting. Recently, to effectively train the deep
learning models with minimal labelled samples, the unlabeled samples are also
being leveraged in self-supervised and semi-supervised setting. In this work,
we leverage the idea of semi-supervised learning to assist the discriminative
self-supervised pretraining of the models. The proposed method takes different
augmented views of the unlabeled samples as input and assigns them the same
pseudo-label corresponding to the labelled sample from the downstream task. We
train our model on two HSI datasets, namely Houston dataset (from data fusion
contest, 2013) and Pavia university dataset, and show that the proposed
approach performs better than self-supervised approach and supervised training.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
We introduce a novel approach called textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC)
We estimate the class bias of the model parameters during the training process.
We apply a secondary correction to the model's pseudo-labels for unlabeled samples.
arXiv Detail & Related papers (2023-12-27T15:06:36Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
We introduce the first semi-supervised (semi-paired) framework for label-to-image translation.
In the semi-paired setting, the model has access to a small set of paired data and a larger set of unpaired images and labels.
We propose a training algorithm for this shared network, and we present a rare classes sampling algorithm to focus on under-represented classes.
arXiv Detail & Related papers (2023-06-23T16:13:43Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
Deep learning models rely on the abundance of labelled observations to train a prospective model.
It is expensive to gather labelled observations of data, making the usage of deep learning models not ideal.
In many situations different unlabelled data sources might be available.
This raises the risk of a significant distribution mismatch between the labelled and unlabelled datasets.
arXiv Detail & Related papers (2022-03-01T02:46:00Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
We propose a semi-weakly supervised contrastive learning framework for representation learning using semi-weakly annotated images.
We empirically validate the transfer learning performance of SWCL on seven public retinal fundus datasets.
arXiv Detail & Related papers (2021-08-04T15:50:09Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.