SynCoLFinGer: Synthetic Contactless Fingerprint Generator
- URL: http://arxiv.org/abs/2110.09144v1
- Date: Mon, 18 Oct 2021 09:56:07 GMT
- Title: SynCoLFinGer: Synthetic Contactless Fingerprint Generator
- Authors: Jannis Priesnitz, Christian Rathgeb, Nicolas Buchmann, Christoph Busch
- Abstract summary: The proposed method is able to generate different synthetic samples corresponding to a single finger.
The resemblance of the synthetically generated contactless fingerprints to real fingerprints is confirmed by evaluating biometric sample quality.
- Score: 14.92708078957906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first method for synthetic generation of contactless
fingerprint images, referred to as SynCoLFinGer. To this end, the constituent
components of contactless fingerprint images regarding capturing, subject
characteristics, and environmental influences are modeled and applied to a
synthetically generated ridge pattern using the SFinGe algorithm. The proposed
method is able to generate different synthetic samples corresponding to a
single finger and it can be parameterized to generate contactless fingerprint
images of various quality levels. The resemblance of the synthetically
generated contactless fingerprints to real fingerprints is confirmed by
evaluating biometric sample quality using an adapted NFIQ 2.0 algorithm and
biometric utility using a state-of-the-art contactless fingerprint recognition
system.
Related papers
- DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models [0.0]
This study explores the generation of synthesized fingerprint images using Denoising Diffusion Probabilistic Models (DDPMs)
Our results reveal that DiffFinger not only competes with authentic training set data in quality but also provides a richer set of biometric data, reflecting true-to-life variability.
arXiv Detail & Related papers (2024-03-15T14:34:29Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
We present FPGAN-Control, an identity preserving image generation framework.
We introduce a novel appearance loss that encourages disentanglement between the fingerprint's identity and appearance properties.
We demonstrate the merits of FPGAN-Control, both quantitatively and qualitatively, in terms of identity level, degree of appearance control, and low synthetic-to-real domain gap.
arXiv Detail & Related papers (2023-10-29T14:30:01Z) - Synthetic Latent Fingerprint Generation Using Style Transfer [6.530917936319386]
We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints.
Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact-based fingerprints.
arXiv Detail & Related papers (2023-09-27T15:47:00Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
We propose the first deep forgery detection approach for fingerprint images, which combines unique ridge features of fingerprint and generation artifacts of the GAN-generated images.
Our proposed approach is effective and robust with low complexities.
arXiv Detail & Related papers (2023-08-18T04:05:18Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets.
This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data.
arXiv Detail & Related papers (2022-04-13T16:27:27Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
We propose a novel fingerprint synthesis and reconstruction framework based on the StyleGan2 architecture.
We also derive a computational approach to modify the attributes of the generated fingerprint while preserving their identity.
The proposed framework was experimentally shown to outperform contemporary state-of-the-art approaches for both fingerprint synthesis and reconstruction.
arXiv Detail & Related papers (2022-01-17T00:18:00Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.