論文の概要: Forecasting Nonverbal Social Signals during Dyadic Interactions with
Generative Adversarial Neural Networks
- arxiv url: http://arxiv.org/abs/2110.09378v1
- Date: Mon, 18 Oct 2021 15:01:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 16:38:33.982618
- Title: Forecasting Nonverbal Social Signals during Dyadic Interactions with
Generative Adversarial Neural Networks
- Title(参考訳): 生成的対向ニューラルネットワークによる動的相互作用における非言語的社会的信号の予測
- Authors: Nguyen Tan Viet Tuyen, Oya Celiktutan
- Abstract要約: 社会的相互作用の成功は、非言語的知覚と行動機構の相互作用と密接に結びついている。
非言語的ジェスチャーは、発話を強調したり意図を示す能力を持つ社会ロボットを養うことが期待されている。
我々の研究は、社会的相互作用における人間の振舞いのモデル化に光を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We are approaching a future where social robots will progressively become
widespread in many aspects of our daily lives, including education, healthcare,
work, and personal use. All of such practical applications require that humans
and robots collaborate in human environments, where social interaction is
unavoidable. Along with verbal communication, successful social interaction is
closely coupled with the interplay between nonverbal perception and action
mechanisms, such as observation of gaze behaviour and following their
attention, coordinating the form and function of hand gestures. Humans perform
nonverbal communication in an instinctive and adaptive manner, with no effort.
For robots to be successful in our social landscape, they should therefore
engage in social interactions in a humanlike way, with increasing levels of
autonomy. In particular, nonverbal gestures are expected to endow social robots
with the capability of emphasizing their speech, or showing their intentions.
Motivated by this, our research sheds a light on modeling human behaviors in
social interactions, specifically, forecasting human nonverbal social signals
during dyadic interactions, with an overarching goal of developing robotic
interfaces that can learn to imitate human dyadic interactions. Such an
approach will ensure the messages encoded in the robot gestures could be
perceived by interacting partners in a facile and transparent manner, which
could help improve the interacting partner perception and makes the social
interaction outcomes enhanced.
- Abstract(参考訳): 私たちは、教育、医療、仕事、個人的利用など、私たちの日常生活の多くの面で、ソーシャルロボットが徐々に普及する未来に近づいています。
このような実践的な応用には、人間とロボットは、社会的相互作用が避けられない環境において協力する必要がある。
言語コミュニケーションと並行して、成功した社会的相互作用は、非言語的な知覚と、視線行動の観察やそれらの注意の追従といった行動メカニズムの相互作用と密接に結びついており、手のジェスチャーの形態と機能を調整する。
人間は本能的で適応的な方法で非言語コミュニケーションを行う。
ロボットが私たちの社会的景観で成功するためには、自律性のレベルが増大するにつれて、人間のような方法で社会的な相互作用を行う必要がある。
特に、非言語的ジェスチャーは、発話を強調したり、意図を示す能力を持つ社会ロボットを養うことが期待されている。
今回の研究は、社会的相互作用における人間の振る舞いをモデル化することに焦点を当て、特に、人間の非言語的社会的シグナルをダイアド的相互作用の間に予測することを目的としています。
このようなアプローチは、ロボットジェスチャにエンコードされたメッセージが、facileで透明な方法で相互作用するパートナーによって認識されることを確実にする。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning [0.7864304771129751]
移動ロボットは様々な混み合った状況で大規模に使われており、私たちの社会の一部になっている。
個人を考慮した移動ロボットの社会的に許容されるナビゲーション行動は、スケーラブルなアプリケーションと人間の受容にとって必須の要件である。
本稿では,ロボットの社会行動が適応的であり,人間との相互作用から生じる,社会統合型ナビゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T18:25:40Z) - Developing Social Robots with Empathetic Non-Verbal Cues Using Large
Language Models [2.5489046505746704]
我々は,音声,行動(妊娠),表情,感情の4種類の共感的非言語的手がかりを社会ロボットで設計し,ラベル付けする。
予備的な結果は、ロボットの反応において「喜び」や「リリー」のような穏やかでポジティブな社会的感情の好みや、頻繁にうなずく動作など、異なるパターンが示される。
我々の研究は、言語と非言語の両方が社会的・共感的なロボットを作る上で不可欠な役割を強調し、人間とロボットの相互作用に関する将来の研究の基盤となる。
論文 参考訳(メタデータ) (2023-08-31T08:20:04Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
知覚された聴覚刺激と感情表現の関連性を学ぶことができるNICOロボットを提供します。
NICOは、感情駆動対話システムの助けを借りて、個人と特定の刺激の両方でこれを行うことができる。
ロボットは、実際のHRIシナリオにおいて、被験者の聴覚刺激の楽しさを判断するために、この情報を利用することができる。
論文 参考訳(メタデータ) (2021-03-05T20:55:48Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
社会的ナビゲーションモデルは、差別や差別のような社会的不公平を複製し、促進し、増幅することができる。
提案するフレームワークは,安全性と快適性を考慮したソーシャルコンテキストを学習プロセスに組み込んだtextitlearningと,発生前に潜在的に有害な結果を検出し修正するtextitrelearningの2つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2021-01-07T17:42:35Z) - Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions [16.40684407420441]
協調的な相互作用は、人間の感情的行動のダイナミクスに適応するために社会ロボットを必要とする。
社会ロボットにおける人格駆動行動生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-14T16:34:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。