Relational Neural Markov Random Fields
- URL: http://arxiv.org/abs/2110.09647v1
- Date: Mon, 18 Oct 2021 22:52:54 GMT
- Title: Relational Neural Markov Random Fields
- Authors: Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi
- Abstract summary: We introduce Markov Random Fields (RN-MRFs) which allow handling of complex hybrid domains.
We propose a maximum pseudolikelihood estimation-based learning algorithm with importance for training the potential parameters.
- Score: 29.43155380361715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical Relational Learning (SRL) models have attracted significant
attention due to their ability to model complex data while handling
uncertainty. However, most of these models have been limited to discrete
domains due to their limited potential functions. We introduce Relational
Neural Markov Random Fields (RN-MRFs) which allow for handling of complex
relational hybrid domains. The key advantage of our model is that it makes
minimal data distributional assumptions and can seamlessly allow for human
knowledge through potentials or relational rules. We propose a maximum
pseudolikelihood estimation-based learning algorithm with importance sampling
for training the neural potential parameters. Our empirical evaluations across
diverse domains such as image processing and relational object mapping, clearly
demonstrate its effectiveness against non-neural counterparts.
Related papers
- Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons [2.77390041716769]
Kolmogorov-Arnold Networks (KANs) use highly flexible learnable activation functions directly on network edges.
KANs significantly increase the number of learnable parameters, raising concerns about their effectiveness in data-scarce environments.
We show that individualized activation functions achieve significantly higher predictive accuracy with only a modest increase in parameters.
arXiv Detail & Related papers (2024-09-16T16:56:08Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.
Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Balancing Explainability-Accuracy of Complex Models [8.402048778245165]
We introduce a new approach for complex models based on the co-relation impact.
We propose approaches for both scenarios of independent features and dependent features.
We provide an upper bound of the complexity of our proposed approach for the dependent features.
arXiv Detail & Related papers (2023-05-23T14:20:38Z) - Unsupervised representation learning with recognition-parametrised
probabilistic models [12.865596223775649]
We introduce a new approach to probabilistic unsupervised learning based on the recognition-parametrised model ( RPM)
Under the key assumption that observations are conditionally independent given latents, the RPM combines parametric prior observation-conditioned latent distributions with non-parametric observationfactors.
The RPM provides a powerful framework to discover meaningful latent structure underlying observational data, a function critical to both animal and artificial intelligence.
arXiv Detail & Related papers (2022-09-13T00:33:21Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.