The $f$-divergence and Loss Functions in ROC Curve
- URL: http://arxiv.org/abs/2110.09651v1
- Date: Mon, 18 Oct 2021 23:12:35 GMT
- Title: The $f$-divergence and Loss Functions in ROC Curve
- Authors: Song Liu
- Abstract summary: Given two data distributions and a test score function, the Receiver Operating Characteristic (ROC) curve shows how well such a score separates two distributions.
Can the ROC curve be used as a measure of discrepancy between two distributions?
This paper shows that when the data likelihood ratio is used as the test score, the arc length of the ROC curve gives rise to a novel $f$-divergence measuring the differences between two data distributions.
- Score: 2.9823962001574182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given two data distributions and a test score function, the Receiver
Operating Characteristic (ROC) curve shows how well such a score separates two
distributions. However, can the ROC curve be used as a measure of discrepancy
between two distributions? This paper shows that when the data likelihood ratio
is used as the test score, the arc length of the ROC curve gives rise to a
novel $f$-divergence measuring the differences between two data distributions.
Approximating this arc length using a variational objective and empirical
samples leads to empirical risk minimization with previously unknown loss
functions. We provide a Lagrangian dual objective and introduce kernel models
into the estimation problem. We study the non-parametric convergence rate of
this estimator and show under mild smoothness conditions of the real arctangent
density ratio function, the rate of convergence is $O_p(n^{-\beta/4})$ ($\beta
\in (0,1]$ depends on the smoothness).
Related papers
- ROC-n-reroll: How verifier imperfection affects test-time scaling [10.949594516629652]
Test-time scaling aims to improve language model performance by leveraging additional compute during inference.<n>There is little theoretical understanding of how verifier imperfection affects performance.<n>We prove how instance-level accuracy of methods is precisely characterized by the geometry of the verifier's ROC curve.
arXiv Detail & Related papers (2025-07-16T16:44:29Z) - Straightness of Rectified Flow: A Theoretical Insight into Wasserstein Convergence [54.580605276017096]
Diffusion models have emerged as a powerful tool for image generation and denoising.
Recently, Liu et al. designed a novel alternative generative model Rectified Flow (RF)
RF aims to learn straight flow trajectories from noise to data using a sequence of convex optimization problems.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.
We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Gaussian-Smoothed Sliced Probability Divergences [15.123608776470077]
We show that smoothing and slicing preserve the metric property and the weak topology.
We also derive other properties, including continuity, of different divergences with respect to the smoothing parameter.
arXiv Detail & Related papers (2024-04-04T07:55:46Z) - Byzantine-resilient Federated Learning With Adaptivity to Data Heterogeneity [54.145730036889496]
This paper deals with Gradient learning (FL) in the presence of malicious attacks Byzantine data.
A novel Average Algorithm (RAGA) is proposed, which leverages robustness aggregation and can select a dataset.
arXiv Detail & Related papers (2024-03-20T08:15:08Z) - Computing Marginal and Conditional Divergences between Decomposable
Models with Applications [7.89568731669979]
We propose an approach to compute the exact alpha-beta divergence between any marginal or conditional distribution of two decomposable models.
We show how our method can be used to analyze distributional changes by first applying it to a benchmark image dataset.
Based on our framework, we propose a novel way to quantify the error in contemporary superconducting quantum computers.
arXiv Detail & Related papers (2023-10-13T14:17:25Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
We introduce a new model that enables it to describe quasar spectra completely.
We also introduce a new method of inference of Gaussian process parameters, which we call $textitNeural Inference$.
The combination of both the CDRW model and Neural Inference significantly outperforms the baseline DRW and MLE.
arXiv Detail & Related papers (2022-11-17T13:01:26Z) - Improved Analysis of Score-based Generative Modeling: User-Friendly
Bounds under Minimal Smoothness Assumptions [9.953088581242845]
We provide convergence guarantees with complexity for any data distribution with second-order moment.
Our result does not rely on any log-concavity or functional inequality assumption.
Our theoretical analysis provides comparison between different discrete approximations and may guide the choice of discretization points in practice.
arXiv Detail & Related papers (2022-11-03T15:51:00Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.