論文の概要: Entity Relation Extraction as Dependency Parsing in Visually Rich
Documents
- arxiv url: http://arxiv.org/abs/2110.09915v1
- Date: Tue, 19 Oct 2021 12:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 13:18:57.095032
- Title: Entity Relation Extraction as Dependency Parsing in Visually Rich
Documents
- Title(参考訳): ビジュアルリッチドキュメントにおける依存性解析としてのエンティティ関係抽出
- Authors: Yue Zhang, Bo Zhang, Rui Wang, Junjie Cao, Chen Li, Zuyi Bao
- Abstract要約: 一般的な依存性解析モデルであるbiaffineを,このエンティティ関係抽出タスクに適用する。
単語間の依存関係関係を認識する依存性解析モデルとは異なることから,単語群間の関係をレイアウト情報で識別する。
実世界のアプリケーションについては、本モデルが社内の税関データに適用され、プロダクション環境で信頼性の高い性能を実現している。
- 参考スコア(独自算出の注目度): 18.67730663266417
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Previous works on key information extraction from visually rich documents
(VRDs) mainly focus on labeling the text within each bounding box (i.e.,
semantic entity), while the relations in-between are largely unexplored. In
this paper, we adapt the popular dependency parsing model, the biaffine parser,
to this entity relation extraction task. Being different from the original
dependency parsing model which recognizes dependency relations between words,
we identify relations between groups of words with layout information instead.
We have compared different representations of the semantic entity, different
VRD encoders, and different relation decoders. The results demonstrate that our
proposed model achieves 65.96% F1 score on the FUNSD dataset. As for the
real-world application, our model has been applied to the in-house customs
data, achieving reliable performance in the production setting.
- Abstract(参考訳): 視覚的にリッチなドキュメント(VRD)からキー情報を抽出する以前の研究は、主に境界ボックス(セマンティック・エンティティ)内のテキストのラベル付けに重点を置いている。
本稿では,このエンティティ関係抽出タスクに対して,一般的な依存性解析モデルであるbiaffine parserを適用する。
単語間の依存関係関係を認識する依存性解析モデルとは異なることから,単語群間の関係をレイアウト情報で識別する。
我々は、セマンティックエンティティの異なる表現、異なるvrdエンコーダ、異なる関係デコーダを比較した。
その結果,FUNSDデータセットの65.96%のF1スコアが得られた。
実世界のアプリケーションに関しては、当社のモデルは社内のカスタムデータに適用され、本番環境での信頼性の高いパフォーマンスを実現しています。
関連論文リスト
- Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
我々は,ハイパグラフアテンションを利用したハイパグラフアテンション文書セマンティックエンティティ認識フレームワークHGAを構築し,エンティティ境界とエンティティカテゴリを同時に重視する。
FUNSD, CORD, XFUNDIE で得られた結果は,本手法が意味的エンティティ認識タスクの性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2024-07-09T14:35:49Z) - Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
論文 参考訳(メタデータ) (2024-03-12T08:58:07Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
文書画像から鍵情報を正確かつ堅牢に抽出する手法を提案する。
我々は、エンティティを意味的ポイントとして明示的にモデル化する。つまり、エンティティの中心点は、異なるエンティティの属性と関係を記述する意味情報によって豊かになる。
提案手法は,従来の最先端モデルと比較して,エンティティラベルとリンクの性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-03-23T08:21:16Z) - Relation-Specific Attentions over Entity Mentions for Enhanced
Document-Level Relation Extraction [4.685620089585031]
本稿では,候補関係に関して,異なるエンティティの言及に対して選択的に注目するRSMANを提案する。
2つのベンチマークデータセットによる実験により、RSMANはいくつかのバックボーンモデルに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2022-05-28T10:40:31Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - A Trigger-Sense Memory Flow Framework for Joint Entity and Relation
Extraction [5.059120569845976]
結合エンティティと関係抽出のためのTriMF(Trigger-Sense Memory Flow Framework)を提案する。
エンティティ認識と関係抽出タスクで学習したカテゴリ表現を記憶するためのメモリモジュールを構築する。
また,エンティティ認識と関係抽出の双方向インタラクションを強化するために,多レベルメモリフロー注目機構を設計する。
論文 参考訳(メタデータ) (2021-01-25T16:24:04Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
文書レベルの関係抽出(DocRE)のための新しいエンコーダ分類器再構成モデルを提案する。
再構築器は、グラフ表現からの基底経路依存性を再構築し、提案されたDocREモデルがトレーニングにおけるエンティティペアと関係をエンコードすることにもっと注意を払っていることを確認する。
大規模docreデータセットにおける実験結果から,提案モデルにより,グラフベースラインにおける関係抽出精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-12-21T14:29:31Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Relation Extraction with Contextualized Relation Embedding (CRE) [6.030060645424665]
本稿では,意味情報と知識ベースモデリングを統合した関係抽出タスクのアーキテクチャを提案する。
本稿では、関係抽出においてKBモデリングを内部化するモデルアーキテクチャを提案する。
提案したCREモデルは、The New York Times Annotated CorpusとFreeBaseから派生したデータセット上でのアートパフォーマンスの状態を達成している。
論文 参考訳(メタデータ) (2020-11-19T05:19:46Z) - Relation of the Relations: A New Paradigm of the Relation Extraction
Problem [52.21210549224131]
我々は,関係抽出(RE)の新たなパラダイムを提案し,同じ文脈におけるすべての関係の予測を総合的に検討する。
我々は、手作りのルールを必要としないデータ駆動型アプローチを開発し、グラフニューラルネットワークと関係行列変換器を用いた関係関係(RoR)をそれ自体で学習する。
実験の結果、私たちのモデルはACE05データセットでは+1.12%、SemEval 2018 Task 7.2では2.55%で最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-05T22:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。