論文の概要: Advanced Statistical Learning on Short Term Load Process Forecasting
- arxiv url: http://arxiv.org/abs/2110.09920v1
- Date: Tue, 19 Oct 2021 12:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 14:34:33.841326
- Title: Advanced Statistical Learning on Short Term Load Process Forecasting
- Title(参考訳): 短期負荷予測における統計的学習の高度化
- Authors: Junjie Hu, Brenda L\'opez Cabrera, Awdesch Melzer
- Abstract要約: 短期負荷予測(STLF)は、電力消費者の効率的なスケジューリング、運転最適化取引、意思決定に必要である。
本研究では, ハードタイプデータセットのこれらの課題を管理するための統計非線形モデルを提案し, 最大2日前に15分間の周波数負荷を予測した。
- 参考スコア(独自算出の注目度): 13.466565318976887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Short Term Load Forecast (STLF) is necessary for effective scheduling,
operation optimization trading, and decision-making for electricity consumers.
Modern and efficient machine learning methods are recalled nowadays to manage
complicated structural big datasets, which are characterized by having a
nonlinear temporal dependence structure. We propose different statistical
nonlinear models to manage these challenges of hard type datasets and forecast
15-min frequency electricity load up to 2-days ahead. We show that the
Long-short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) models applied
to the production line of a chemical production facility outperform several
other predictive models in terms of out-of-sample forecasting accuracy by the
Diebold-Mariano (DM) test with several metrics. The predictive information is
fundamental for the risk and production management of electricity consumers.
- Abstract(参考訳): 電力消費者の効果的なスケジューリング、運用最適化取引、意思決定には短期負荷予測(stlf)が必要である。
現代的かつ効率的な機械学習手法は、非線形時間依存構造を特徴とする複雑な構造的ビッグデータを管理するためにリコールされている。
ハードタイプデータセットの課題を管理するために, 異なる統計非線形モデルを提案し, 2日以内の電力負荷を15分程度予測する。
化学生産施設の生産ラインに適用された長短項メモリ(LSTM)とGRU(Gated Recurrent Unit)モデルは,Diebold-Mariano(DM)テストによるサンプル外予測精度において,他の予測モデルよりも優れていることを示す。
予測情報は電力消費者のリスクと生産管理の基盤である。
関連論文リスト
- LLMForecaster: Improving Seasonal Event Forecasts with Unstructured Textual Data [63.777637042161544]
本稿では,非構造化意味情報と文脈情報と履歴データを組み込むために,大規模言語モデルを微調整した新しい予測ポストプロセッサを提案する。
産業規模の小売アプリケーションでは, ホリデードリブン需要の急激な上昇にともなう数種類の製品に対して, 本手法が統計的に有意な改善を予測できることが実証された。
論文 参考訳(メタデータ) (2024-12-03T16:18:42Z) - Multi-variable Adversarial Time-Series Forecast Model [0.7832189413179361]
短期的な産業用電力システムの予測は、負荷制御と機械保護の両方において重要な問題である。
本稿では,Long Short-Term Memory(LSTM)モデルを逆処理により正規化する,多変数の逆時系列予測モデルを提案する。
論文 参考訳(メタデータ) (2024-06-02T02:30:10Z) - Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage [0.0]
モデルデータ効率を改善するための尺度の予測精度への影響を定量化する。
負荷予測モデルに2年以上のトレーニングデータを使用することで,予測精度が大幅に向上することはなかった。
再使用したモデルと3ヶ月のデータでトレーニングされたモデルでは、ベースラインよりも平均10%高いエラーがあった。
論文 参考訳(メタデータ) (2024-02-19T21:01:11Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
短期負荷予測(STLF)は電力グリッドとエネルギー市場の効果的かつ経済的な運用に不可欠である。
STLFの文献ではいくつかのディープラーニングモデルが提案されており、有望な結果を報告している。
論文 参考訳(メタデータ) (2023-02-23T17:11:04Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
本稿では,GRU (Gated Recurrent Unit) とLong Short-Term Memory (LSTM) アーキテクチャを提案する。
電力消費データセットは家庭ごとのスマートメーターから得られた。
論文 参考訳(メタデータ) (2022-12-16T23:42:57Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。