論文の概要: Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
- arxiv url: http://arxiv.org/abs/2207.07827v5
- Date: Tue, 25 Mar 2025 23:17:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:18:45.017430
- Title: Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
- Title(参考訳): 変圧器を用いた長期時系列予測システムの再活性化のためのデータ冗長化
- Authors: Mingjie Li, Rui Liu, Guangsi Shi, Mingfei Han, Changling Li, Lina Yao, Xiaojun Chang, Ling Chen,
- Abstract要約: 本稿では,カリキュラム学習とメモリ駆動デコーダによる冗長性を緩和する新しいフレームワークであるCLMFormerを紹介する。
CLMFormerはTransformerベースのモデルを最大30%改善し、長距離予測の有効性を示している。
- 参考スコア(独自算出の注目度): 46.39662315849883
- License:
- Abstract: Long-term time-series forecasting (LTSF) is fundamental to various real-world applications, where Transformer-based models have become the dominant framework due to their ability to capture long-range dependencies. However, these models often experience overfitting due to data redundancy in rolling forecasting settings, limiting their generalization ability particularly evident in longer sequences with highly similar adjacent data. In this work, we introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder. Specifically, we progressively introduce Bernoulli noise to the training samples, which effectively breaks the high similarity between adjacent data points. This curriculum-driven noise introduction aids the memory-driven decoder by supplying more diverse and representative training data, enhancing the decoder's ability to model seasonal tendencies and dependencies in the time-series data. To further enhance forecasting accuracy, we introduce a memory-driven decoder. This component enables the model to capture seasonal tendencies and dependencies in the time-series data and leverages temporal relationships to facilitate the forecasting process. Extensive experiments on six real-world LTSF benchmarks show that CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
- Abstract(参考訳): 長期的な時系列予測(LTSF)は、Transformerベースのモデルが長距離依存関係をキャプチャする能力によって支配的なフレームワークとなっている、様々な現実世界のアプリケーションに不可欠である。
しかしながら、これらのモデルは、ローリング予測設定におけるデータの冗長性による過度な適合を経験し、特に非常に類似したデータを持つ長いシーケンスにおいて、その一般化能力を制限する。
本研究では,カリキュラム学習とメモリ駆動デコーダによる冗長性を緩和する新しいフレームワークであるCLMFormerを紹介する。
具体的には、Bernoulliノイズをトレーニングサンプルに徐々に導入し、隣接するデータポイント間の高い類似性を効果的に破壊する。
このカリキュラム駆動のノイズ導入は、より多彩で代表的なトレーニングデータを提供することで、メモリ駆動のデコーダを支援し、時系列データにおける季節傾向と依存関係をモデル化するデコーダの能力を向上する。
予測精度をさらに高めるため,メモリ駆動デコーダを導入する。
このコンポーネントは、時系列データにおける季節傾向と依存関係をキャプチャし、時間的関係を利用して予測プロセスを促進する。
6つの実世界のLTSFベンチマークの大規模な実験により、CLMFormerはトランスフォーマーベースのモデルを最大30%改善し、長距離予測の有効性を示した。
関連論文リスト
- Ister: Inverted Seasonal-Trend Decomposition Transformer for Explainable Multivariate Time Series Forecasting [10.32586981170693]
Inverted Seasonal-Trend Decomposition Transformer (Ister)
本稿では,解釈可能性,計算効率,予測精度を向上させる新しいDotアテンション機構を提案する。
Isterはコンポーネントのコントリビューションを直感的に視覚化し、モデルの意思決定プロセスに光を流し、予測結果の透明性を高める。
論文 参考訳(メタデータ) (2024-12-25T06:37:19Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
クライアント(Client)は,従来のトランスフォーマーベースモデルと線形モデルの両方に勝る高度なモデルである。
クライアントは、従来の線形モデルとTransformerベースのモデルとを分離した、非線形性とクロス変数の依存関係を組み込んでいる。
論文 参考訳(メタデータ) (2023-05-30T08:31:22Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
我々はウェーブレットベースのトランスフォーマーエンコーダアーキテクチャを用いて,非定常時系列のトランスフォーマーモデルを構築した。
各種ドメインから公開されているベンチマーク時系列データセットについて,本フレームワークの評価を行った。
論文 参考訳(メタデータ) (2022-09-08T17:39:38Z) - ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting [35.76867542099019]
時系列予測のための変換器の改良に指数的スムース化の原理を利用する新しい時系列変換器アーキテクチャであるETSFormerを提案する。
特に,時系列予測における古典的指数的スムージング手法に着想を得て,バニラ変圧器の自己保持機構を置き換えるために,新しい指数的スムージングアテンション(ESA)と周波数アテンション(FA)を提案する。
論文 参考訳(メタデータ) (2022-02-03T02:50:44Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。