論文の概要: Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks
- arxiv url: http://arxiv.org/abs/2110.10489v1
- Date: Wed, 20 Oct 2021 11:03:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-23 21:07:01.147172
- Title: Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks
- Title(参考訳): 3次元畳み込みニューラルネットワークを用いたfMRIデータからの自閉症スペクトラム障害の分類法の検討
- Authors: Johan J\"onemo, David Abramian, Anders Eklund
- Abstract要約: 我々は,3D畳み込みニューラルネットワーク(CNN)を前処理した1,112人の被験者の安静状態誘導体を用いて分類を行う。
以上の結果から,Augmentationはテスト精度をわずかに改善するだけであることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying subjects as healthy or diseased using neuroimaging data has
gained a lot of attention during the last 10 years. Here we apply deep learning
to derivatives from resting state fMRI data, and investigate how different 3D
augmentation techniques affect the test accuracy. Specifically, we use resting
state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D
convolutional neural network (CNN) to perform the classification. Our results
show that augmentation only provide minor improvements to the test accuracy.
- Abstract(参考訳): 神経画像データを使って被験者を健康的または病気と分類することは、過去10年間に多くの注目を集めてきた。
本稿では, 静止状態のfMRIデータから導出したディープラーニングを適用し, 異なる3次元増強技術がテスト精度に与える影響について検討する。
具体的には、3D畳み込みニューラルネットワーク(CNN)を前処理した1,112人の被験者の安静状態誘導体を用いて分類を行う。
その結果,強化はテスト精度にわずかな改善しか与えないことがわかった。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
論文 参考訳(メタデータ) (2024-06-20T11:26:32Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs [0.0]
本研究では,ADHD障害分類のためのfMRIデータ解析アルゴリズムを提案する。
3D-GANを利用することで、ディープフェイクデータを使用して脳障害の3D CNN分類の精度を高めることができる。
論文 参考訳(メタデータ) (2022-05-24T11:39:11Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
脳の磁気共鳴イメージング(MRI)データに基づく年齢予測は、脳疾患や老化の進行を定量化するバイオマーカーである。
現在のアプローチでは、voxelを標準化された脳アトラスに登録するなど、複数の前処理ステップでデータを準備する。
ここでは、ResNetアーキテクチャに基づく3D Convolutional Neural Network(CNN)について、未登録のT1重み付きMRIデータに基づいてトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T09:48:34Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
本研究では、メモリ消費を低減し、アンバランスデータの影響を低減するためにパッチベースの技術で訓練された3Dエンコーダデコーダアーキテクチャを検討する。
また,テストタイム・ドロップアウト (TTD) とデータ拡張 (TTA) を用いて, てんかん, てんかんともにボキセル関連不確実性情報を導入する。
この研究で提案されたモデルと不確実性推定測定は、腫瘍の分割と不確実性推定に関するタスク1および3のBraTS'20チャレンジで使用されています。
論文 参考訳(メタデータ) (2020-12-30T19:28:53Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Brain Tumor Segmentation using 3D-CNNs with Uncertainty Estimation [0.0]
本稿では,V-Net citevnetをベースとした3次元エンコーダデコーダアーキテクチャを提案する。
不確実性マップは専門家の神経学者に余分な情報を提供し、モデルが与えられたセグメンテーションに自信がないことを検知するのに有用である。
論文 参考訳(メタデータ) (2020-09-24T10:50:12Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。