Finite-temperature quantum discordant criticality
- URL: http://arxiv.org/abs/2110.10597v2
- Date: Tue, 26 Oct 2021 13:21:30 GMT
- Title: Finite-temperature quantum discordant criticality
- Authors: Poetri Sonya Tarabunga, Tiago Mendes-Santos, Fabrizio Illuminati,
Marcello Dalmonte
- Abstract summary: In quantum statistical mechanics, finite-temperature phase transitions are governed by classical field theories.
Recent contributions have shown how entanglement is typically very short-ranged, and thus uninformative about long-ranged critical correlations.
We show the existence of finite-temperature phase transitions where a broader form of quantum correlation than entanglement, the entropic quantum discord, can display genuine signatures of critical behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum statistical mechanics, finite-temperature phase transitions are
typically governed by classical field theories. In this context, the role of
quantum correlations is unclear: recent contributions have shown how
entanglement is typically very short-ranged, and thus uninformative about
long-ranged critical correlations. In this work, we show the existence of
finite-temperature phase transitions where a broader form of quantum
correlation than entanglement, the entropic quantum discord, can display
genuine signatures of critical behavior. We consider integrable bosonic field
theories in both two- and three-dimensional lattices, and show how the two-mode
Gaussian discord decays algebraically with the distance even in cases where the
entanglement negativity vanishes beyond nearest-neighbor separations.
Systematically approaching the zero-temperature limit allows us to connect
discord to entanglement, drawing a generic picture of quantum correlations and
critical behavior that naturally describes the transition between entangled and
discordant quantum matter.
Related papers
- Entanglement, information and non-equilibrium phase transitions in long-range open quantum Ising chains [0.0]
Non-equilibrium phase transitions of open quantum systems exhibit diverging classical but not quantum correlations.
We study these quantities in the steady state of open quantum Ising chains with power-law interactions.
We consider three distinct entanglement measures: logarithmic negativity; quantum Fisher information; and, spin squeezing.
arXiv Detail & Related papers (2024-10-07T18:00:00Z) - Clustering of conditional mutual information and quantum Markov structure at arbitrary temperatures [0.0]
Recent investigations have unveiled exotic quantum phases that elude characterization by simple bipartite correlation functions.
In these phases, long-range entanglement arising from tripartite correlations plays a central role.
Our findings unveil that, even at low temperatures, a broad class of tripartite entanglement cannot manifest in the long-range regime.
arXiv Detail & Related papers (2024-07-08T11:30:12Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Exponential clustering of bipartite quantum entanglement at arbitrary
temperatures [0.0]
We show that bi-partite long-range entanglement is unstable at arbitrary temperatures and exponentially decays with distance.
Our work reveals novel general aspects of low-temperature quantum physics and sheds light on the characterization of long-range entanglement.
arXiv Detail & Related papers (2021-08-27T10:12:47Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.