論文の概要: Improving the Deployment of Recycling Classification through Efficient
Hyper-Parameter Analysis
- arxiv url: http://arxiv.org/abs/2110.11043v1
- Date: Thu, 21 Oct 2021 10:42:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 17:10:56.676390
- Title: Improving the Deployment of Recycling Classification through Efficient
Hyper-Parameter Analysis
- Title(参考訳): 効率的なハイパーパラメータ解析によるリサイクル分類の展開改善
- Authors: Mazin Abdulmahmood and Ryan Grammenos
- Abstract要約: 本稿では,協調的なリサイクル分類モデルであるWasteNetのより効率的なバージョンを開発する。
新たに開発されたモデルは、テストセット精度95.8%、実際の単語精度95%、オリジナルよりも14%向上した。
私たちの加速パイプラインは、Jetson Nano組み込みデバイスで毎秒750%から24パーセントの速度でモデルスループットを向上しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paradigm of automated waste classification has recently seen a shift in
the domain of interest from conventional image processing techniques to
powerful computer vision algorithms known as convolutional neural networks
(CNN). Historically, CNNs have demonstrated a strong dependency on powerful
hardware for real-time classification, yet the need for deployment on weaker
embedded devices is greater than ever. The work in this paper proposes a
methodology for reconstructing and tuning conventional image classification
models, using EfficientNets, to decrease their parameterisation with no
trade-off in model accuracy and develops a pipeline through TensorRT for
accelerating such models to run at real-time on an NVIDIA Jetson Nano embedded
device. The train-deployment discrepancy, relating how poor data augmentation
leads to a discrepancy in model accuracy between training and deployment, is
often neglected in many papers and thus the work is extended by analysing and
evaluating the impact real word perturbations had on model accuracy once
deployed. The scope of the work concerns developing a more efficient variant of
WasteNet, a collaborative recycling classification model. The newly developed
model scores a test-set accuracy of 95.8\% with a real word accuracy of 95%, a
14% increase over the original. Our acceleration pipeline boosted model
throughput by 750% to 24 inferences per second on the Jetson Nano and real-time
latency of the system was verified through servomotor latency analysis.
- Abstract(参考訳): 自動廃棄物分類のパラダイムは、最近、従来の画像処理技術から畳み込みニューラルネットワーク(CNN)として知られる強力なコンピュータビジョンアルゴリズムへと関心が移っている。
歴史的にCNNは、リアルタイム分類のための強力なハードウェアへの強い依存を示してきたが、より弱い組み込みデバイスへのデプロイメントの必要性はこれまで以上に大きい。
本稿では,従来の画像分類モデルの再構成とチューニングを行う手法を提案する。EfficientNetsは,モデル精度のトレードオフのないパラメータ化を削減し,NVIDIA Jetson Nano組み込みデバイス上でリアルタイムに動作するためのTensorRTを用いたパイプラインを開発する。
トレーニングと展開のモデル精度の相違にデータ拡張がどのような影響を及ぼすかに関する列車の展開遅延は、多くの論文で無視されることが多く、一度展開されたモデル精度に実際の単語の摂動が与えた影響を分析して評価することで、作業が拡張される。
作業の範囲は、共同リサイクル分類モデルであるムダネットのより効率的な変種の開発に関係している。
新たに開発されたモデルは、テストセット精度95.8\%、実際の単語精度95%、オリジナルよりも14%向上した。
我々の加速パイプラインは,Jetson Nano上で毎秒750%から24パーセントの速度でモデルスループットを向上し,サーボモータ遅延解析によりシステムのリアルタイムレイテンシを検証した。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
本稿では,ハードウェア選択,バッチサイズ,エポック数,テストセット精度の影響を測定するために,高速化された故障時間モデルを提案する。
我々は、複数のGPUタイプを評価し、モデルの堅牢性を最大化し、モデル実行時間を同時に最小化するためにTree Parzen Estimatorを使用します。
論文 参考訳(メタデータ) (2024-09-11T20:43:59Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
ネットワークの機能マップにスパシティを爆発させることは、推論のレイテンシを低減する方法の1つです。
そこで本研究では,セミ構造化されたアクティベーション空間を小さなランタイム修正によって活用する手法を提案する。
当社のアプローチでは,ImageNetデータセット上のResNet18モデルに対して,最小精度が1.1%の1.25倍の速度向上を実現している。
論文 参考訳(メタデータ) (2023-09-12T22:28:53Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks [20.374784902476318]
モデル重み付けにゼロを導入する方法として, モデル精度と計算効率のトレードオフを良好に提供する方法として, プルーニングが有効であることが示されている。
現代のプロセッサには、高速なオンチップスクラッチパッドメモリと、間接的に負荷を発生させ、そのようなメモリ上の操作を格納する集/散乱エンジンが備わっている。
本研究では,スクラッチパッドメモリと集合/散乱エンジンを利用して,ニューラルネットワークの推論を高速化する,新しいスパースパターン(GSパターン)を提案する。
論文 参考訳(メタデータ) (2021-12-20T22:55:45Z) - Real-time Human Detection Model for Edge Devices [0.0]
畳み込みニューラルネットワーク(CNN)は、検出と分類タスクにおいて、従来の特徴抽出と機械学習モデルを置き換える。
最近、リアルタイムタスクのために軽量CNNモデルが導入されている。
本稿では,Raspberry Piのような限られたエッジデバイスに適合するCNNベースの軽量モデルを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:42:17Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。