論文の概要: V-EfficientNets: Vector-Valued Efficiently Scaled Convolutional Neural Network Models
- arxiv url: http://arxiv.org/abs/2505.05659v1
- Date: Thu, 08 May 2025 21:35:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.091316
- Title: V-EfficientNets: Vector-Valued Efficiently Scaled Convolutional Neural Network Models
- Title(参考訳): V-EfficientNets:ベクトル値有効スケール畳み込みニューラルネットワークモデル
- Authors: Guilherme Vieira Neto, Marcos Eduardo Valle,
- Abstract要約: V-EfficientNetsは任意のベクトル値データを処理するように設計されたEfficientNetの新たな拡張である。
提案手法は医用画像分類タスクで評価され,平均精度は99.46%である。
V-EfficientNetsは優れた効率を示し、パラメータを著しく削減し、最先端モデルより優れている。
- 参考スコア(独自算出の注目度): 0.4143603294943439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: EfficientNet models are convolutional neural networks optimized for parameter allocation by jointly balancing network width, depth, and resolution. Renowned for their exceptional accuracy, these models have become a standard for image classification tasks across diverse computer vision benchmarks. While traditional neural networks learn correlations between feature channels during training, vector-valued neural networks inherently treat multidimensional data as coherent entities, taking for granted the inter-channel relationships. This paper introduces vector-valued EfficientNets (V-EfficientNets), a novel extension of EfficientNet designed to process arbitrary vector-valued data. The proposed models are evaluated on a medical image classification task, achieving an average accuracy of 99.46% on the ALL-IDB2 dataset for detecting acute lymphoblastic leukemia. V-EfficientNets demonstrate remarkable efficiency, significantly reducing parameters while outperforming state-of-the-art models, including the original EfficientNet. The source code is available at https://github.com/mevalle/v-nets.
- Abstract(参考訳): 効率的なNetモデルは、パラメータ割り当てに最適化された畳み込みニューラルネットワークであり、ネットワーク幅、深さ、解像度を協調的にバランスする。
これらのモデルは異常な精度で知られており、様々なコンピュータビジョンベンチマークにおける画像分類タスクの標準となっている。
従来のニューラルネットワークはトレーニング中に特徴チャネル間の相関関係を学習するが、ベクトル値ニューラルネットワークは本質的に多次元データを一貫性のあるエンティティとして扱う。
本稿では,ベクトル値データを処理するために設計されたEfficientNetの新たな拡張であるベクトル値EfficientNets(V-EfficientNets)を紹介する。
提案したモデルは、急性リンパ性白血病を検出するためのall-IDB2データセットの平均精度99.46%に達する医療画像分類タスクに基づいて評価される。
V-EfficientNetは優れた効率を示し、元のEfficientNetを含む最先端モデルを上回るパラメータを著しく削減する。
ソースコードはhttps://github.com/mevalle/v-netsで入手できる。
関連論文リスト
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
現代のディープラーニングモデルは数千万のパラメータを持ち、推論プロセスはリソース集約化されている。
本稿では,非必須パラメータを除去するネットワーク・プルーニング・フレームワークの提案と評価を行う。
提案するフレームワークは,従来のネットワークと比較して,競争力のあるリーンネットワークを生成する。
論文 参考訳(メタデータ) (2025-02-11T02:31:04Z) - A Multi-Fidelity Graph U-Net Model for Accelerated Physics Simulations [1.2430809884830318]
本稿では,GNNモデルの性能向上のための多元性手法の利点を生かした,新しいGNNアーキテクチャであるMulti-Fidelity U-Netを提案する。
提案手法は精度とデータ要求において有意に優れた性能を示すことを示す。
また,提案アーキテクチャの高速バージョンであるMulti-Fidelity U-Net Liteを35%高速化し,精度を2~5%削減した。
論文 参考訳(メタデータ) (2024-12-19T20:09:38Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Supervised Training of Siamese Spiking Neural Networks with Earth's
Mover Distance [4.047840018793636]
本研究は,高可逆性シアムニューラルネットモデルをイベントデータ領域に適応させる。
我々はスパイク・トレインとスパイク・ニューラル・ネットワーク(SNN)の間の地球のモーバー距離を最適化するための教師付きトレーニング・フレームワークを導入する。
論文 参考訳(メタデータ) (2022-02-20T00:27:57Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
残留ネットワーク(ResNet)と密結合ネットワーク(DenseNet)は、ディープ畳み込みニューラルネットワーク(DCNN)のトレーニング効率と性能を大幅に改善した。
両ネットワークの利点を考慮した効率的なネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-28T12:16:24Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。