One-Shot Transfer Learning of Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2110.11286v1
- Date: Thu, 21 Oct 2021 17:14:58 GMT
- Title: One-Shot Transfer Learning of Physics-Informed Neural Networks
- Authors: Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, Stephen
Roberts
- Abstract summary: We present a framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations.
This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network.
- Score: 2.6084034060847894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving differential equations efficiently and accurately sits at the heart
of progress in many areas of scientific research, from classical dynamical
systems to quantum mechanics. There is a surge of interest in using
Physics-Informed Neural Networks (PINNs) to tackle such problems as they
provide numerous benefits over traditional numerical approaches. Despite their
potential benefits for solving differential equations, transfer learning has
been under explored. In this study, we present a general framework for transfer
learning PINNs that results in one-shot inference for linear systems of both
ordinary and partial differential equations. This means that highly accurate
solutions to many unknown differential equations can be obtained
instantaneously without retraining an entire network. We demonstrate the
efficacy of the proposed deep learning approach by solving several real-world
problems, such as first- and second-order linear ordinary equations, the
Poisson equation, and the time-dependent Schrodinger complex-value partial
differential equation.
Related papers
- Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations [0.0]
Chebyshevs have shown significant promise as an efficient tool for both classical and quantum neural networks to solve differential equations.
We adapt and generalize this framework in a quantum machine learning setting for a variety of problems.
Results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
arXiv Detail & Related papers (2023-12-14T18:46:35Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving differential equations.
We adopt a recently developed transfer learning approach for PINNs and introduce a multi-head model.
We show that our methods provide significant computational speedups in comparison to standard PINNs trained from scratch.
arXiv Detail & Related papers (2022-11-01T01:50:00Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
Trained neural networks act as universal function approximators, able to numerically solve differential equations in a novel way.
Variations on traditional loss function and training parameters show promise in making neural network-aided solutions more efficient.
arXiv Detail & Related papers (2022-08-07T17:12:39Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Quantum Model-Discovery [19.90246111091863]
Quantum algorithms for solving differential equations have shown a provable advantage in the fault-tolerant quantum computing regime.
We extend the applicability of near-term quantum computers to more general scientific machine learning tasks.
Our results show a promising path to Quantum Model Discovery (QMoD) on the interface between classical and quantum machine learning approaches.
arXiv Detail & Related papers (2021-11-11T18:45:52Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Physics-informed neural networks for the shallow-water equations on the
sphere [0.0]
Physics-informed neural networks are trained to satisfy the differential equations along with the prescribed initial and boundary data.
We propose a simple multi-model approach to tackle test cases of comparatively long time intervals.
arXiv Detail & Related papers (2021-04-01T16:47:40Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.