Physics-informed neural networks for the shallow-water equations on the
sphere
- URL: http://arxiv.org/abs/2104.00615v1
- Date: Thu, 1 Apr 2021 16:47:40 GMT
- Title: Physics-informed neural networks for the shallow-water equations on the
sphere
- Authors: Alex Bihlo and Roman O. Popovych
- Abstract summary: Physics-informed neural networks are trained to satisfy the differential equations along with the prescribed initial and boundary data.
We propose a simple multi-model approach to tackle test cases of comparatively long time intervals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the use of physics-informed neural networks for solving the
shallow-water equations on the sphere. Physics-informed neural networks are
trained to satisfy the differential equations along with the prescribed initial
and boundary data, and thus can be seen as an alternative approach to solving
differential equations compared to traditional numerical approaches such as
finite difference, finite volume or spectral methods. We discuss the training
difficulties of physics-informed neural networks for the shallow-water
equations on the sphere and propose a simple multi-model approach to tackle
test cases of comparatively long time intervals. We illustrate the abilities of
the method by solving the most prominent test cases proposed by Williamson et
al. [J. Comput. Phys. 102, 211-224, 1992].
Related papers
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations [3.8916312075738273]
We propose a novel approach called the Newton Informed Neural Operator to tackle nonlinearities.
Our method combines classical Newton methods, addressing well-posed problems, and efficiently learns multiple solutions in a single learning process.
arXiv Detail & Related papers (2024-05-23T01:52:54Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
We introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations.
Our algorithm uses a Physics-informed Neural Network, that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex dynamics.
arXiv Detail & Related papers (2024-05-22T14:36:23Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - An Analysis of Physics-Informed Neural Networks [0.0]
We present a new approach to approximating the solution to physical systems - physics-informed neural networks.
The concept of artificial neural networks is introduced, the objective function is defined, and optimisation strategies are discussed.
The partial differential equation is then included as a constraint in the loss function for the problem, giving the network access to knowledge of the dynamics of the physical system it is modelling.
arXiv Detail & Related papers (2023-03-06T04:45:53Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
We present a framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations.
This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network.
arXiv Detail & Related papers (2021-10-21T17:14:58Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.