Quantum Simulation of Black Holes in a dc-SQUID Array
- URL: http://arxiv.org/abs/2110.11344v2
- Date: Thu, 16 Dec 2021 16:53:37 GMT
- Title: Quantum Simulation of Black Holes in a dc-SQUID Array
- Authors: Adri\'an Terrones and Carlos Sab\'in
- Abstract summary: We propose quantum simulations of 1+1D radial sections of different black hole spacetimes.
We show that the generation of event horizons -- and therefore Hawking radiation -- in the simulator could be achieved for non-rotating black holes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose quantum simulations of 1+1D radial sections of different black
hole spacetimes (Schwarzschild, Reissner-Nordstr\o{}m, Kerr and Kerr-Newman),
by means of a dc-SQUID array embedded on an open transmission line. This is
achieved by reproducing the effective speed of light in the 1+1D sections of
the spacetime with the propagation speed of the electromagnetic field in the
simulator, which can be modulated by an external magnetic flux. We show that
the generation of event horizons -- and therefore Hawking radiation -- in the
simulator could be achieved for non-rotating black holes, although we discuss
limitations related to fluctuations of the quantum phase. In the case of
rotating black holes, it seems that the simulation of ergospheres is beyond
reach.
Related papers
- Singular Excitement Beyond the Horizon of a Rotating Black Hole [4.003194245289446]
We numerically compute the detector's transition rate for different values of black hole mass, black hole angular momentum, detector energy gap, and field boundary conditions at infinity.
Our results lead to a more generalized description of the behaviour of particle detectors in BTZ black hole spacetime.
arXiv Detail & Related papers (2024-07-01T18:00:01Z) - Probing quantum properties of black holes with a Floquet-driven optical
lattice simulator [0.0]
We present an analogue quantum simulation of (1 + 1)- dimensional black holes using ultracold atoms in a locally Floquet-driven 1D optical lattice.
We show how the effective dynamics of the driven system can generate a position-dependent tunnelling profile that encodes the curved geometry of the black hole.
We provide a simple and robust scheme to determine the Hawking temperature of the simulated black hole based solely on on-site atom population measurements.
arXiv Detail & Related papers (2023-12-21T17:36:28Z) - Polariton Fluids as Quantum Field Theory Simulators on Tailored Curved Spacetimes [0.0]
Quantum fields in curved spacetime exhibit a wealth of effects like Hawking radiation from black holes.
In experiments, a fluid going from sub- to supersonic speed creates an effectively curved spacetime for the acoustic field.
Control over the horizon curvature and access to the spectrum on either side demonstrates the potential of quantum fluids of light for the study of field theories.
arXiv Detail & Related papers (2023-11-02T16:52:09Z) - Signatures of Rotating Black Holes in Quantum Superposition [0.09118034517251884]
We show that a two-level system interacting with a quantum field residing in the spacetime exhibits resonant peaks in its response at certain values of the superposed masses.
Our results suggest that deeper insights into quantum-gravitational phenomena may be accessible via tools in relativistic quantum information and curved spacetime quantum field theory.
arXiv Detail & Related papers (2023-10-16T22:24:21Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.