Quantum teleportation between simulated binary black holes
- URL: http://arxiv.org/abs/2503.10761v1
- Date: Thu, 13 Mar 2025 18:00:02 GMT
- Title: Quantum teleportation between simulated binary black holes
- Authors: Aiden Daniel, Tanmay Bhore, Jiannis K. Pachos, Chang Liu, Andrew Hallam,
- Abstract summary: The quantum description of a black hole predicts that quantum information hidden behind the event horizon can be teleported outside almost instantaneously.<n>In this work, we demonstrate that a chiral spin-chain model, which naturally simulates a binary black hole system, can realise this teleportation process.<n>Our results establish the feasibility of simulating quantum properties of black holes within condensed matter systems.
- Score: 2.5842310354531404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum description of a black hole predicts that quantum information hidden behind the event horizon can be teleported outside almost instantaneously. In this work, we demonstrate that a chiral spin-chain model, which naturally simulates a binary black hole system, can realise this teleportation process. Our system captures two essential components of this protocol: Hawking radiation, which generates the necessary entanglement between the black holes, and optimal scrambling, which enables high-fidelity teleportation on short timescales. Through numerical simulations, we quantify the key timescales governing the process, including the Page time, radiation time, scrambling time, and butterfly velocity, showing their universal dependence on the chiral coupling strength. Our results establish the feasibility of simulating quantum properties of black holes within condensed matter systems, offering an experimentally accessible platform for probing otherwise inaccessible high-energy phenomena.
Related papers
- Probing quantum properties of black holes with a Floquet-driven optical lattice simulator [0.0]
We present a scheme for an analogue quantum simulation of (1 + 1) and (2 + 1)-dimensional black holes using ultracold atoms.<n>We show how the effective dynamics of the driven system can generate position-dependent tunnelling amplitudes that encode the curved geometry of the black hole.<n>We also provide a scheme to determine the Hawking temperature of a (1+1)D simulated black hole based solely on on-site atom population measurements.
arXiv Detail & Related papers (2023-12-21T17:36:28Z) - Quantumness near a Schwarzschild black hole [0.0]
We study the quantumness near a Schwarzschild black hole in a practical model under decoherence.
We explore the impacts of Hawking radiation and decoherence on the system under investigation.
arXiv Detail & Related papers (2023-10-24T09:38:41Z) - Signatures of Rotating Black Holes in Quantum Superposition [0.09118034517251884]
We show that a two-level system interacting with a quantum field residing in the spacetime exhibits resonant peaks in its response at certain values of the superposed masses.
Our results suggest that deeper insights into quantum-gravitational phenomena may be accessible via tools in relativistic quantum information and curved spacetime quantum field theory.
arXiv Detail & Related papers (2023-10-16T22:24:21Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Quantum Simulation of Black Holes in a dc-SQUID Array [0.0]
We propose quantum simulations of 1+1D radial sections of different black hole spacetimes.
We show that the generation of event horizons -- and therefore Hawking radiation -- in the simulator could be achieved for non-rotating black holes.
arXiv Detail & Related papers (2021-10-20T15:48:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.