論文の概要: Explainable Landscape-Aware Optimization Performance Prediction
- arxiv url: http://arxiv.org/abs/2110.11633v1
- Date: Fri, 22 Oct 2021 07:46:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-25 15:20:23.072027
- Title: Explainable Landscape-Aware Optimization Performance Prediction
- Title(参考訳): ランドスケープアウェア最適化性能予測
- Authors: Risto Trajanov and Stefan Dimeski and Martin Popovski and Peter
Koro\v{s}ec and Tome Eftimov
- Abstract要約: ランドスケープを考慮した回帰モデルについて検討する。
各景観特徴の最適化アルゴリズム性能予測への寄与を,グローバルおよびローカルレベルで推定する。
その結果、異なる問題インスタンスに対して異なる機能セットが重要であるという概念の証明が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient solving of an unseen optimization problem is related to appropriate
selection of an optimization algorithm and its hyper-parameters. For this
purpose, automated algorithm performance prediction should be performed that in
most commonly-applied practices involves training a supervised ML algorithm
using a set of problem landscape features. However, the main issue of training
such models is their limited explainability since they only provide information
about the joint impact of the set of landscape features to the end prediction
results. In this study, we are investigating explainable landscape-aware
regression models where the contribution of each landscape feature to the
prediction of the optimization algorithm performance is estimated on a global
and local level. The global level provides information about the impact of the
feature across all benchmark problems' instances, while the local level
provides information about the impact on a specific problem instance. The
experimental results are obtained using the COCO benchmark problems and three
differently configured modular CMA-ESs. The results show a proof of concept
that different set of features are important for different problem instances,
which indicates that further personalization of the landscape space is required
when training an automated algorithm performance prediction model.
- Abstract(参考訳): 未発見の最適化問題の効率的な解法は、最適化アルゴリズムとそのハイパーパラメータの適切な選択に関連している。
この目的のために、アルゴリズムの自動性能予測は、一般的に適用されているほとんどのプラクティスでは、一連の問題ランドスケープ機能を使用して教師付きMLアルゴリズムをトレーニングする必要がある。
しかし,このようなモデルのトレーニングの主な課題は,景観特徴の集合が最終予測結果に与える影響についてのみ情報を提供するため,限定的な説明可能性である。
本研究では,各景観特徴の最適化アルゴリズム性能予測への寄与を,グローバルおよびローカルレベルで推定する,説明可能な景観認識回帰モデルについて検討する。
グローバルレベルはすべてのベンチマーク問題のインスタンスに対する機能の影響に関する情報を提供するが、ローカルレベルは特定の問題インスタンスに対する影響に関する情報を提供する。
実験結果はCOCOベンチマーク問題と3つの異なる構成のモジュールCMA-ESを用いて得られた。
その結果、異なる問題インスタンスに対して異なる特徴セットが重要であるという概念の証明を示し、自動アルゴリズムの性能予測モデルのトレーニングにおいて、ランドスケープ空間のさらなるパーソナライズが必要であることを示した。
関連論文リスト
- Learning Loss Landscapes in Preference Optimization [39.15940594751445]
本稿では,選好データセットの特定の特性,例えば混合品質データやノイズデータなどの特性が,選好最適化(PO)アルゴリズムの性能にどのように影響するかを実証研究する。
MuJoCo環境で実施した我々の実験は、最先端のPOメソッドがパフォーマンスの大幅な低下を経験するいくつかのシナリオを明らかにした。
この枠組みでは,問題のあるシナリオを扱える新たな損失関数を発見するために,進化的戦略を採用する。
論文 参考訳(メタデータ) (2024-11-10T19:11:48Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - The Importance of Landscape Features for Performance Prediction of
Modular CMA-ES Variants [2.3823600586675724]
近年の研究では、教師あり機械学習手法が問題事例から抽出したランドスケープ特徴を用いてアルゴリズムの性能を予測できることが示されている。
モジュール型CMA-ESフレームワークを考察し、各ランドスケープ機能が最適なアルゴリズム性能回帰モデルにどの程度貢献するかを推定する。
論文 参考訳(メタデータ) (2022-04-15T11:55:28Z) - Explainable Landscape Analysis in Automated Algorithm Performance
Prediction [0.0]
自動アルゴリズムの性能予測において,異なる教師付き機械学習モデルによって活用される問題景観の特徴の表現性について検討する。
教師付きML回帰モデルでは,問題ランドスケープの特徴が異なるため,教師付きML手法の選択が重要であることを実験的に指摘した。
論文 参考訳(メタデータ) (2022-03-22T15:54:17Z) - Personalizing Performance Regression Models to Black-Box Optimization
Problems [0.755972004983746]
本研究では,数値最適化問題に対するパーソナライズされた回帰手法を提案する。
また、問題毎に1つの回帰モデルを選択するのではなく、パーソナライズされたアンサンブルを選択することの影響についても検討する。
本稿では,BBOBベンチマークコレクション上での数値最適化性能の予測について検討する。
論文 参考訳(メタデータ) (2021-04-22T11:47:47Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
市販の教師あり学習手法を用いて,高品質な性能予測が可能であることを示す。
このアプローチを,モジュール型CMA-ESアルゴリズム群から選択した,非常に類似したアルゴリズムのポートフォリオ上でテストする。
論文 参考訳(メタデータ) (2020-06-17T13:34:57Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。