論文の概要: Explainable Landscape Analysis in Automated Algorithm Performance
Prediction
- arxiv url: http://arxiv.org/abs/2203.11828v1
- Date: Tue, 22 Mar 2022 15:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 15:13:03.515435
- Title: Explainable Landscape Analysis in Automated Algorithm Performance
Prediction
- Title(参考訳): 自動アルゴリズム性能予測における説明可能な景観解析
- Authors: Risto Trajanov and Stefan Dimeski and Martin Popovski and Peter
Koro\v{s}ec and Tome Eftimov
- Abstract要約: 自動アルゴリズムの性能予測において,異なる教師付き機械学習モデルによって活用される問題景観の特徴の表現性について検討する。
教師付きML回帰モデルでは,問題ランドスケープの特徴が異なるため,教師付きML手法の選択が重要であることを実験的に指摘した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the performance of an optimization algorithm on a new problem
instance is crucial in order to select the most appropriate algorithm for
solving that problem instance. For this purpose, recent studies learn a
supervised machine learning (ML) model using a set of problem landscape
features linked to the performance achieved by the optimization algorithm.
However, these models are black-box with the only goal of achieving good
predictive performance, without providing explanations which landscape features
contribute the most to the prediction of the performance achieved by the
optimization algorithm. In this study, we investigate the expressiveness of
problem landscape features utilized by different supervised ML models in
automated algorithm performance prediction. The experimental results point out
that the selection of the supervised ML method is crucial, since different
supervised ML regression models utilize the problem landscape features
differently and there is no common pattern with regard to which landscape
features are the most informative.
- Abstract(参考訳): 新しい問題インスタンス上での最適化アルゴリズムの性能予測は、その問題インスタンスを解決するのに最適なアルゴリズムを選択するために不可欠である。
この目的のために,近年,最適化アルゴリズムが達成した性能に関連する問題ランドスケープ特徴のセットを用いて教師付き機械学習(ml)モデルを学習した。
しかし、これらのモデルはブラックボックスであり、最適化アルゴリズムによって達成される性能の予測に最も寄与するランドスケープの特徴を説明することなく、優れた予測性能を達成するための唯一の目標である。
本研究では,アルゴリズムの自動性能予測において,異なる教師付きMLモデルを用いた問題景観特徴の表現性について検討する。
実験の結果,教師付きML手法の選択は,異なる教師付きML回帰モデルが問題ランドスケープの特徴を異なる方法で活用しているため,どのランドスケープの特徴が最も有益かという共通パターンが存在しないため,極めて重要であることが示された。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
単目的連続ブラックボックス最適化の分野におけるアルゴリズム選択への重要な貢献について概説する。
自動アルゴリズム選択、構成、性能予測のための機械学習モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-08T11:11:14Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - The Importance of Landscape Features for Performance Prediction of
Modular CMA-ES Variants [2.3823600586675724]
近年の研究では、教師あり機械学習手法が問題事例から抽出したランドスケープ特徴を用いてアルゴリズムの性能を予測できることが示されている。
モジュール型CMA-ESフレームワークを考察し、各ランドスケープ機能が最適なアルゴリズム性能回帰モデルにどの程度貢献するかを推定する。
論文 参考訳(メタデータ) (2022-04-15T11:55:28Z) - Explainable Landscape-Aware Optimization Performance Prediction [0.0]
ランドスケープを考慮した回帰モデルについて検討する。
各景観特徴の最適化アルゴリズム性能予測への寄与を,グローバルおよびローカルレベルで推定する。
その結果、異なる問題インスタンスに対して異なる機能セットが重要であるという概念の証明が得られた。
論文 参考訳(メタデータ) (2021-10-22T07:46:33Z) - Personalizing Performance Regression Models to Black-Box Optimization
Problems [0.755972004983746]
本研究では,数値最適化問題に対するパーソナライズされた回帰手法を提案する。
また、問題毎に1つの回帰モデルを選択するのではなく、パーソナライズされたアンサンブルを選択することの影響についても検討する。
本稿では,BBOBベンチマークコレクション上での数値最適化性能の予測について検討する。
論文 参考訳(メタデータ) (2021-04-22T11:47:47Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
市販の教師あり学習手法を用いて,高品質な性能予測が可能であることを示す。
このアプローチを,モジュール型CMA-ESアルゴリズム群から選択した,非常に類似したアルゴリズムのポートフォリオ上でテストする。
論文 参考訳(メタデータ) (2020-06-17T13:34:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。