論文の概要: An attention-driven hierarchical multi-scale representation for visual
recognition
- arxiv url: http://arxiv.org/abs/2110.12178v1
- Date: Sat, 23 Oct 2021 09:22:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 13:40:48.843931
- Title: An attention-driven hierarchical multi-scale representation for visual
recognition
- Title(参考訳): 視覚認識のための注意駆動階層型マルチスケール表現
- Authors: Zachary Wharton, Ardhendu Behera and Asish Bera
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、視覚内容の理解に革命をもたらした。
グラフ畳み込みネットワーク(GCN)を探索することにより,高レベルの長距離依存関係を捕捉する手法を提案する。
本手法は,細粒度と総称的な視覚的分類の両問題を解くのに極めて効果的である。
- 参考スコア(独自算出の注目度): 3.3302293148249125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have revolutionized the understanding of
visual content. This is mainly due to their ability to break down an image into
smaller pieces, extract multi-scale localized features and compose them to
construct highly expressive representations for decision making. However, the
convolution operation is unable to capture long-range dependencies such as
arbitrary relations between pixels since it operates on a fixed-size window.
Therefore, it may not be suitable for discriminating subtle changes (e.g.
fine-grained visual recognition). To this end, our proposed method captures the
high-level long-range dependencies by exploring Graph Convolutional Networks
(GCNs), which aggregate information by establishing relationships among
multi-scale hierarchical regions. These regions consist of smaller (closer
look) to larger (far look), and the dependency between regions is modeled by an
innovative attention-driven message propagation, guided by the graph structure
to emphasize the neighborhoods of a given region. Our approach is simple yet
extremely effective in solving both the fine-grained and generic visual
classification problems. It outperforms the state-of-the-arts with a
significant margin on three and is very competitive on other two datasets.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、視覚内容の理解に革命をもたらした。
これは主に、画像を小さな部分に分割し、複数の局所的な特徴を抽出し、意思決定のために高度に表現力のある表現を構築するために構成する能力に起因している。
しかし、コンボリューション操作は、固定サイズのウィンドウで動作するため、画素間の任意の関係のような長距離依存関係をキャプチャできない。
したがって、微妙な変化(例えば細粒度の視覚認識)を判別するのには適さない。
そこで本提案手法では,多層階層領域間の関係性を確立することにより,情報を集約するグラフ畳み込みネットワーク(gcns)を探索することにより,高レベルな長距離依存性を捉える。
これらの領域はより小さい(近視)からより大きな(遠視)まで構成され、領域間の依存性は、ある領域の近傍を強調するためにグラフ構造によって導かれる革新的な注意主導のメッセージ伝達によってモデル化される。
本手法は, きめ細かな視覚的分類問題の解決に極めて有効である。
これは最先端の3つを上回り、他の2つのデータセットで非常に競争力がある。
関連論文リスト
- ResolvNet: A Graph Convolutional Network with multi-scale Consistency [47.98039061491647]
マルチスケール一貫性の概念を導入する。
グラフレベルでは、マルチスケールの一貫性は、異なる解像度で同じオブジェクトを記述する異なるグラフが同様の特徴ベクトルを割り当てるべきという事実を指す。
本稿では,リゾルダーの数学的概念に基づくフレキシブルグラフニューラルネットワークResolvNetを紹介する。
論文 参考訳(メタデータ) (2023-09-30T16:46:45Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
本稿では,最も関連性の高い画像領域からコンテキスト認識機能を集約することで,微妙な変化を捉える手法を提案する。
我々のアプローチは、近年の自己注意とグラフニューラルネットワーク(GNN)の発展にインスパイアされている。
これは、認識精度のかなりの差で最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-09-05T19:43:15Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Learning Granularity-Aware Convolutional Neural Network for Fine-Grained
Visual Classification [0.0]
識別的特徴を段階的に探索するGranularity-Aware Congrainedal Neural Network (GA-CNN)を提案する。
GA-CNNはバウンディングボックス/パーツアノテーションを必要とせず、エンドツーエンドでトレーニングできます。
このアプローチは3つのベンチマークデータセットで最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2021-03-04T02:18:07Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。