An attention-driven hierarchical multi-scale representation for visual
recognition
- URL: http://arxiv.org/abs/2110.12178v1
- Date: Sat, 23 Oct 2021 09:22:22 GMT
- Title: An attention-driven hierarchical multi-scale representation for visual
recognition
- Authors: Zachary Wharton, Ardhendu Behera and Asish Bera
- Abstract summary: Convolutional Neural Networks (CNNs) have revolutionized the understanding of visual content.
We propose a method to capture high-level long-range dependencies by exploring Graph Convolutional Networks (GCNs)
Our approach is simple yet extremely effective in solving both the fine-grained and generic visual classification problems.
- Score: 3.3302293148249125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have revolutionized the understanding of
visual content. This is mainly due to their ability to break down an image into
smaller pieces, extract multi-scale localized features and compose them to
construct highly expressive representations for decision making. However, the
convolution operation is unable to capture long-range dependencies such as
arbitrary relations between pixels since it operates on a fixed-size window.
Therefore, it may not be suitable for discriminating subtle changes (e.g.
fine-grained visual recognition). To this end, our proposed method captures the
high-level long-range dependencies by exploring Graph Convolutional Networks
(GCNs), which aggregate information by establishing relationships among
multi-scale hierarchical regions. These regions consist of smaller (closer
look) to larger (far look), and the dependency between regions is modeled by an
innovative attention-driven message propagation, guided by the graph structure
to emphasize the neighborhoods of a given region. Our approach is simple yet
extremely effective in solving both the fine-grained and generic visual
classification problems. It outperforms the state-of-the-arts with a
significant margin on three and is very competitive on other two datasets.
Related papers
- ResolvNet: A Graph Convolutional Network with multi-scale Consistency [47.98039061491647]
We introduce the concept of multi-scale consistency.
At the graph-level, multi-scale consistency refers to the fact that distinct graphs describing the same object at different resolutions should be assigned similar feature vectors.
We introduce ResolvNet, a flexible graph neural network based on the mathematical concept of resolvents.
arXiv Detail & Related papers (2023-09-30T16:46:45Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
We propose a method that captures subtle changes by aggregating context-aware features from most relevant image-regions.
Our approach is inspired by the recent advancement in self-attention and graph neural networks (GNNs)
It outperforms the state-of-the-art approaches by a significant margin in recognition accuracy.
arXiv Detail & Related papers (2022-09-05T19:43:15Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Learning Granularity-Aware Convolutional Neural Network for Fine-Grained
Visual Classification [0.0]
We propose a novel Granularity-Aware Congrainedal Neural Network (GA-CNN) that progressively explores discriminative features.
GA-CNN does not need bounding boxes/part annotations and can be trained end-to-end.
Our approach achieves state-of-the-art performances on three benchmark datasets.
arXiv Detail & Related papers (2021-03-04T02:18:07Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.