ResolvNet: A Graph Convolutional Network with multi-scale Consistency
- URL: http://arxiv.org/abs/2310.00431v2
- Date: Mon, 30 Oct 2023 15:42:21 GMT
- Title: ResolvNet: A Graph Convolutional Network with multi-scale Consistency
- Authors: Christian Koke, Abhishek Saroha, Yuesong Shen, Marvin Eisenberger,
Daniel Cremers
- Abstract summary: We introduce the concept of multi-scale consistency.
At the graph-level, multi-scale consistency refers to the fact that distinct graphs describing the same object at different resolutions should be assigned similar feature vectors.
We introduce ResolvNet, a flexible graph neural network based on the mathematical concept of resolvents.
- Score: 47.98039061491647
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is by now a well known fact in the graph learning community that the
presence of bottlenecks severely limits the ability of graph neural networks to
propagate information over long distances. What so far has not been appreciated
is that, counter-intuitively, also the presence of strongly connected
sub-graphs may severely restrict information flow in common architectures.
Motivated by this observation, we introduce the concept of multi-scale
consistency. At the node level this concept refers to the retention of a
connected propagation graph even if connectivity varies over a given graph. At
the graph-level, multi-scale consistency refers to the fact that distinct
graphs describing the same object at different resolutions should be assigned
similar feature vectors. As we show, both properties are not satisfied by
poular graph neural network architectures. To remedy these shortcomings, we
introduce ResolvNet, a flexible graph neural network based on the mathematical
concept of resolvents. We rigorously establish its multi-scale consistency
theoretically and verify it in extensive experiments on real world data: Here
networks based on this ResolvNet architecture prove expressive; out-performing
baselines significantly on many tasks; in- and outside the multi-scale setting.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
Graph neural networks have become a staple in problems addressing learning and analysis of data defined over graphs.
Recent works attribute this to the need to consider multiple neighborhood sizes at the same time and adaptively tune them.
We show that employing a randomly-wired architecture can be a more effective way to increase the capacity of the network and obtain richer representations.
arXiv Detail & Related papers (2021-03-29T12:34:36Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
We introduce a graph convolutional network with skip connections for semi-supervised anomaly detection.
The effectiveness of our model is demonstrated through extensive experiments on five benchmark datasets.
arXiv Detail & Related papers (2020-10-20T13:45:47Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - How hard is to distinguish graphs with graph neural networks? [32.09819774228997]
This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN)
MPNN encompasses the majority of graph neural networks used today and is universal when nodes are given unique features.
An empirical study involving 12 graph classification tasks and 420 networks reveals strong alignment between actual performance and theoretical predictions.
arXiv Detail & Related papers (2020-05-13T22:28:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.